Quantifier Elimination over Finite Fields Using Gröbner Bases

  • Sicun Gao
  • André Platzer
  • Edmund M. Clarke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6742)

Abstract

We give an algebraic quantifier elimination algorithm for the first-order theory over any given finite field using Gröbner basis methods. The algorithm relies on the strong Nullstellensatz and properties of elimination ideals over finite fields. We analyze the theoretical complexity of the algorithm and show its application in the formal analysis of a biological controller model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The SAGE Computer Algebra system, http://sagemath.org
  2. 2.
    The Singular Computer Algebra system, http://www.singular.uni-kl.de/
  3. 3.
    Becker, T., Weispfenning, V.: Gröbner Bases. Springer, Heidelberg (1998)MATHGoogle Scholar
  4. 4.
    Le Borgne, M., Benveniste, A., Le Guernic, P.: Polynomial dynamical systems over finite fields. In: Algebraic Computing in Control, vol. 165. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Marchand, H., Le Borgne, M.: On the Optimal Control of Polynomial Dynamical Systems over Z/pZ. In: 4th International Workshop on Discrete Event Systems, pp. 385–390 (1998)Google Scholar
  6. 6.
    Buchberger, B.: A Theoretical Basis for the Reduction of Polynomials to Canonical Forms. ACM SIGSAM Bulletin 10(3), 19–29 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (1997)MATHGoogle Scholar
  8. 8.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, Heidelberg (2005)MATHGoogle Scholar
  9. 9.
    Gao, S.: Counting Zeroes over Finite Fields with Gröbner Bases. Master Thesis, Carnegie Mellon University (2009)Google Scholar
  10. 10.
    Germundsson, R.: Basic results on ideals and varieties in Finite Fields. Technical Report LiTH-ISY-I-1259, Linkoping University, S-581 83 (1991)Google Scholar
  11. 11.
    Jarrah, A., Vastani, H., Duca, K., Laubenbacher, R.: An Optimal Control Problem for in vitro Virus Vompetition. In: 43rd IEEE Conference on Decision and Control (2004)Google Scholar
  12. 12.
    Jarrah, A.S., Laubenbacher, R., Stigler, B., Stillman, M.: Reverse-engineering of polynomial dynamical systems. Advances in Applied Mathematics 39, 477–489 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lakshman, Y.N.: On the Complexity of Computing a Gröbner Casis for the Radical of a Zero-dimensional Ideal. In: STOC 1990, New York, USA, pp. 555–563 (1990)Google Scholar
  14. 14.
    Lang, S.: Algebra, 3rd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  15. 15.
    Marker, D.: Model theory. Springer, Heidelberg (2002)MATHGoogle Scholar
  16. 16.
    Smith, E.W., Dill, D.L.: Automatic Formal Verification of Block Cipher Implementations. In: FMCAD, pp. 1–7 (2008)Google Scholar
  17. 17.
    Tran, Q.N.: Gröbner Bases Computation in Boolean Rings is PSPACE. International Journal of Applied Mathematics and Computer Sciences 5(2) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sicun Gao
    • 1
  • André Platzer
    • 1
  • Edmund M. Clarke
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations