Advertisement

Typed Monoids – An Eilenberg-Like Theorem for Non Regular Languages

  • Christoph Behle
  • Andreas Krebs
  • Stephanie Reifferscheid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6742)

Abstract

Based on different concepts to obtain a finer notion of language recognition via finite monoids we develop an algebraic structure called typed monoid. This leads to an algebraic description of regular and non regular languages.

We obtain for each language a unique minimal recognizing typed monoid, the typed syntactic monoid. We prove an Eilenberg-like theorem for varieties of typed monoids as well as a similar correspondence for classes of languages with weaker closure properties than varieties.

Keywords

Boolean Algebra Regular Language Closure Property Neutral Element Context Free Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M.: First-order definability on finite structures. Ann. Pure Appl. Logic 45(3), 211–225 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular languages in NC1. J. Comput. Syst. Sci. 44(3), 478–499 (1992)CrossRefzbMATHGoogle Scholar
  4. 4.
    Barrington, D.A.M., Immerman, N., Straubing, H.: On Uniformity within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barrington, D.A.M., Straubing, H., Thérien, D.: Non-uniform automata over groups. Inf. Comput. 89(2), 109–132 (1990)CrossRefzbMATHGoogle Scholar
  6. 6.
    Behle, C., Krebs, A., Mercer, M.: Linear circuits, two-variable logic and weakly blocked monoids. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 147–158. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Eilenberg, S.: Automata, Languages and Machines, vol. A+B. Academic Press, London (1976)zbMATHGoogle Scholar
  8. 8.
    Ésik, Z., Larsen, K.G.: Regular languages definable by Lindström quantifiers. ITA 37(3), 179–241 (2003)zbMATHGoogle Scholar
  9. 9.
    Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. In: FOCS, pp. 260–270 (1981)Google Scholar
  10. 10.
    Gurevich, Y., Lewis, H.R.: A logic for constant-depth circuits. Information and Control 61(1), 65–74 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Krebs, A.: Typed Semigroups, Majority Logic, and Threshold Circuits. Ph.D. thesis, Universität Tübingen (2008)Google Scholar
  13. 13.
    Krebs, A., Lange, K.J., Reifferscheid, S.: Characterizing TC0 in terms of infinite groups. Theory Comput. Syst. 40(4), 303–325 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    McNaughton, R., Papert, S.: Counter-free automata. With an appendix by William Henneman. Research Monograph, vol. 65, XIX, 163 p. The M.I.T. Press, Cambridge (1971)zbMATHGoogle Scholar
  15. 15.
    Pin, J.E.: Varieties of formal languages. Plenum, London (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    Pin, J.E.: A variety theorem without complementation. Izvestiya VUZ Matematika 39, 80–90 (1995); english version: Russian Mathem. (Iz. VUZ) 39, 74–83 (1995) MathSciNetGoogle Scholar
  17. 17.
    Pin, J.E., Straubing, H.: Some results on C-varieties. ITA 39(1), 239–262 (2005)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Rhodes, J., Weil, P.: Algebraic and topological theory of languages. ITA 29(1), 1–44 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Rhodes, J.L., Tilson, B.: The kernel of monoid morphisms. J. Pure Applied Alg. 62, 27–268 (1989)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sakarovitch, J.: An algebraic framework for the study of the syntactic monoids application to the group languages. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 510–516. Springer, Heidelberg (1976)CrossRefGoogle Scholar
  21. 21.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information and Control 8(2), 190–194 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)CrossRefzbMATHGoogle Scholar
  23. 23.
    Tesson, P., Thérien, D.: Logic meets algebra: the case of regular languages. Logical Methods in Computer Science 3(1) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christoph Behle
    • 1
  • Andreas Krebs
    • 1
  • Stephanie Reifferscheid
    • 1
  1. 1.Wilhelm-Schickard-InstitutUniversität TübingenGermany

Personalised recommendations