Advertisement

Performance Evaluation of OpenMP Applications on Virtualized Multicore Machines

  • Jie Tao
  • Karl Fürlinger
  • Holger Marten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6665)

Abstract

Virtualization technology has been applied to a variety of areas including server consolidation, High Performance Computing, as well as Grid and Cloud computing. Due to the fact that applications do not run directly on the hardware of a host machine, virtualization generally causes a performance loss for both sequential and parallel applications.

This paper studies the performance issues of the OpenMP execution on virtualized multicore systems. The goal of this study is to quantify the performance deficit of virtualization of OpenMP applications and further to detect the reason of the performance loss. The results of the investigation are expected to guide the optimization of virtualization technologies as well as the applications.

Keywords

Cloud Computing Virtual Machine High Performance Computing Physical Machine Virtualization Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amazon Web Services. Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
  2. 2.
    Barham, P., Dragovic, B., Fraser, K.: Xen and the Art of Virtualization. In: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 164–144 (2003)Google Scholar
  3. 3.
    Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proceedings of the First European Workshop on OpenMP, pp. 99–105 (1999)Google Scholar
  4. 4.
    Creasy, R.J.: The Origin of the VM/370 Time-Sharing Systems. IBM Journal of Research and Development, 483–490 (September 1981)Google Scholar
  5. 5.
    Dike, J.: User Mode Linux. Prentice Hall, Englewood Cliffs (2006)Google Scholar
  6. 6.
    Ekanayake, J., Fox, G.: High Performance Parallel Computing with Clouds and Cloud Technologies. In: Proceedings of the first International Conference on Cloud Computing (October 2009)Google Scholar
  7. 7.
    Evangelinos, C., Hill, C.N.: Cloud Computing for parallel Scientific HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2. In: Proceedings of CCA 2008 (2008)Google Scholar
  8. 8.
    Figueiredo, R., Dinda, P., Fortes, J.: Case for Grid Computing on Virtual Machines. In: Proceedings of the 23rd International Conference on Distributed Computing, pp. 550–559 (May 2003)Google Scholar
  9. 9.
    Figueiredo, R., Dinda, P.A., Fortes, J.: Resource Virtualization Renaissance. Computer 38(5), 28–31 (2005)CrossRefGoogle Scholar
  10. 10.
    Free Software Foundation. The GNU OpenMP Implementation, http://gcc.gnu.org/onlinedocs/gcc-4.2.4/libgomp/
  11. 11.
    Fürlinger, K., Gerndt, M.: ompP: A profiling tool for openMP. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp. 15–23. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Gartner Inc. Gartner Identifies Top Ten Disruptive Technologies for (2008 to 2012), http://www.gartner.com/it/page.jsp?id=681107
  13. 13.
    Gilbert, L., Tseng, J., Newman, R.: Performance Implications of Virtualization and Hyper-Threading on High Energy Physics Applications in a Grid Environment. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (April 2005)Google Scholar
  14. 14.
    Ibrahim, S., Jin, H., Lu, L.: Evaluating MapReduce on Virtual Machines: The Hadoop Case. In: Proceedings of the First International Conference on Cloud Computing, pp. 519–528 (December 2009)Google Scholar
  15. 15.
    Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H.J., Wright, N.J.: Performance analysis of high performance computing applications on the amazon web services cloud. In: Proceedings of the 2nd International Conference on Cloud Computing Technology and Science, CloudCom 2010 (2010)Google Scholar
  16. 16.
    Keahey, K., Freeman, T.: Science Clouds: Early Experiences in Cloud Computing for Scientific Applications. In: Proceedings of the First Workshop on Cloud Computing and its Applications (October 2008)Google Scholar
  17. 17.
    KVM. Kernel Based Virtual Machine, http://www.linux-kvm.org/
  18. 18.
    Mergen, M.F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for High-performance Computing. ACM SIGOPS Operating Systems Review 40(2), 8–11 (2006)CrossRefGoogle Scholar
  19. 19.
    Michelotto, M., Alef, M., Iribarren, A.: A Comparison of HEP Code with SPEC Benchmark on Multicore Worker Nodes. In: Proceedings of the 17th International Conference on Computing in High Energy and Nuclear Physics (March 2009)Google Scholar
  20. 20.
  21. 21.
    Nurmi, D., Wolski, R., Grzegorczyk, C.: The Eucalyptus Open-source Cloud Computing System. In: Proceedings of CCA 2008 (2008)Google Scholar
  22. 22.
    Open Cirrus TM: The HP/Intel/Yahoo! Open Cloud Computing Research Testbed, https://opencirrus.org/
  23. 23.
    Ranadive, A., Kesavan, M., Gavrilovska, A., Schwan, K.: Performance Implications of Virtualizing Multicore Cluster Machines. In: Proceedings of the 2nd Workshop on System-level Virtualization for High Performance Computing, pp. 1–8 (2008)Google Scholar
  24. 24.
    Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future Trends. Computer 38(5), 39–47 (2005)CrossRefGoogle Scholar
  25. 25.
    Ruda, M., Denemark, J., Matyska, L.: Scheduling Virtual Grids: The Magrathea System. In: Proceedings of the 3rd International Workshop on Virtualization Technology in Distributed computing (November 2007)Google Scholar
  26. 26.
    Sotomayor, B., Montero, R., Llorente, I., Foster, I.: Capacity Leasing in Cloud Systems using the OpenNebula Engine. In: Proceedings of the First Workshop on Cloud Computing and its Applications (October 2008)Google Scholar
  27. 27.
    Tikotekar, A., Vallee, G., Naughton, T.: An Analysis of HPC Benchmarks in Virtual Machine Environments. In: Proceedings of Euro-Par 2008 Workshops - Parallel Processing. LNCS, vol. 5415, pp. 63–71 (2008)Google Scholar
  28. 28.
    VirtualBox.org. VirtualBox, http://www.virtualbox.org/
  29. 29.
    VMware. Server Consolidation, http://www.vmware.com/solutions/consolidation/
  30. 30.
    VMware Inc. VMware, http://www.vmware.com
  31. 31.
    Walker, E.: Benchmarking Amazon EC2 for High-Performance Scientific Computing. The USENIX Magazine 33(5) (October 2008)Google Scholar
  32. 32.
    Wang, L., Kunze, M., Tao, J.: Performance Evaluation of Virtual Machine-based Grid Workflow System. Concurrency and Computation: Practice & Experience (4), 1759–1771 (2008)Google Scholar
  33. 33.
    Wang, L., Tao, J., Kunze, M.: Scientific Cloud Computing: Early Definition and Experience. In: Proceedings of the 2008 International Conference on High Performance Computing and Communications, pp. 825–830 (September 2008)Google Scholar
  34. 34.
    Wang, L., von Laszewski, G., Kunze, M., Tao, J.: Grid Virtualization Engine: Design, Implementation and Evaluation. IEEE Systems Journal 3(4), 477–488 (2009)CrossRefGoogle Scholar
  35. 35.
    Zhao, X., Borders, K., Prakash, A.: Using A Virtual Machine to Protect Sensitive Grid Resources: Research Articles. Concurrency and Computation: Practice & Experience 19(4), 1917–1935 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jie Tao
    • 1
  • Karl Fürlinger
    • 2
  • Holger Marten
    • 1
  1. 1.Steinbuch Center for ComputingKarlsruhe Institute of TechnologyGermany
  2. 2.Department of Computer ScienceLudwig-Maximilians-Universität (LMU)MünchenGermany

Personalised recommendations