The Embodiment of Time Estimation

  • Ramon D. Castillo
  • Guy Van Orden
  • Heidi Kloos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6789)


In this essay, we explain time estimation on the basis of principles of self-organization. Timing behavior can be seen as an outcome of the coupling and coordination across physiological events, overt behavior, and task demands. Such coupling reveals itself in scaling relations known as fractal patterns. The self-organization hypothesis posits a coherent relation between frequency and amplitude of change, as a single coordinated unity, that possess fractal features. Empirical data lend support of this hypothesis, initiating a discussion on how fractal properties of time estimation can be altered by the interplay of voluntary and involuntary control of behavior.


Time Estimation Pink noise Fractal Time Self-Organized Criticality Involuntary and Voluntary Control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Konvalinka, I., Xygalatas, D., Bulbulia, J., Schjodt, U., Jegindo, E.-M., Wallot, S., Van Orden, G., Roepstorff, A.: Synchronized arousal between performers and related spectators in a fire-walking ritual. Proc. Natl. Acad. Sci. USA 108(20), 8514–8519 (2001)CrossRefGoogle Scholar
  2. 2.
    Richardson, M.J., Marsh, K.L., Isenhower, R., Goodman, J., Schmidt, R.C.: Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Hum. Mov. Sci. 26, 867–891 (2007)CrossRefGoogle Scholar
  3. 3.
    Shockley, K., Richardson, D.C., Dale, R.: Conversation and coordinative structures. Topics Cog. Sci. 1, 305–319 (2009)CrossRefGoogle Scholar
  4. 4.
    Bhattacharjee, Y.: A Timely Debate About the Brain. Science 311(5761), 596–598 (2006)CrossRefGoogle Scholar
  5. 5.
    Buhusi, C.V., Meck, W.H.: What makes us tick? Functional and neural mechanisms of interval timing. Nature Rev. Neurosci. 6, 755–765 (2005)CrossRefGoogle Scholar
  6. 6.
    Anderson, M.L.: Neural reuse: A fundamental organizational principle of the brain. Behav. Brain Sci. 33, 245–313 (2010)CrossRefGoogle Scholar
  7. 7.
    Kelso, J.A.S.: Dynamic patterns: The self-organization of brain and behavior. MIT Press, Cambridge (1995)Google Scholar
  8. 8.
    Gilden, D.L.: Cognitive emissions of 1/f noise. Psychol. Rev. 108(1), 33–56 (2001)CrossRefGoogle Scholar
  9. 9.
    Bhattacharya, J.: Increase of universality in human brain during mental imagery from visual perception. PLoS One 4(1), e4121 (2009)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bhattacharya, J., Petsche, H.: Universality in the brain while listening to music. Proc. Biol. Sci. 268(1484), 2423–2433 (2001)CrossRefGoogle Scholar
  11. 11.
    Gong, P., Nikolaev, A., van Leeuwen, C.: Scale-invariant fluctuations of the dynamical synchronization in human brain electrical activity. Neurosci. Lett. 336, 33–36 (2003)CrossRefGoogle Scholar
  12. 12.
    Linkenkaer-Hansen, K., Nikulin, V.V., Palva, J.M., Kaila, K., Ilmoniemi, R.J.: Stimulus-induced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. Eur. J. Neurosci. 19(1), 203–211 (2004)CrossRefGoogle Scholar
  13. 13.
    Stam, C.J., de Bruin, E.A.: Scale-Free Dynamics of Global Functional Connectivity in the Human Brain. Hum. Brain Mapp. 22, 97–109 (2004)CrossRefGoogle Scholar
  14. 14.
    Harris-Warrick, R.M., Marder, E.: Modulation of neural networks for behavior. Annu. Rev. Neurosci. 14, 39–57 (1991)CrossRefGoogle Scholar
  15. 15.
    Hooper, S.L.: Central pattern generators. Curr. Biol. 10(5), R176–R177 (2000)CrossRefGoogle Scholar
  16. 16.
    Morton, D.W., Chiel, H.J.: Neural architectures for adaptive behavior. Trends Neurosci. 17, 413–420 (1994)CrossRefGoogle Scholar
  17. 17.
    Nishikawa, K., Biewener, A.A., Aerts, P., Ahn, A.N., Chiel, H.J., Daley, M.A., Daniel, T.L., Full, R.J., Hale, M.E., Hedrick, T.L., Lappin, A.K., Nichols, T.R., Quinn, R.D., Satterlie, R.A., Szymik, B.: Neuromechanics: an integrative approach for understanding motor control. Integr. Comp. Biol. 47, 16–54 (2007)CrossRefGoogle Scholar
  18. 18.
    Kugler, P.N., Turvey, M.T.: Information, natural law, and the self-assembly of rhythmic movement. Lawrence Erlbaum Associates, Inc., Hillsdale (1987)Google Scholar
  19. 19.
    Riley, M., Shockley, K., Van Orden, G.: Learning from the body about the mind. Topics Cogn. Sci. (in press)Google Scholar
  20. 20.
    Turvey, M.T.: Action and perception at the level of synergies. Hum. Mov. Sci. 26, 657–697 (2007)CrossRefGoogle Scholar
  21. 21.
    Gilden, D.L.: Fluctuations in the time required for elementary decisions. Psychol. Sci. 8, 296–301 (1997)CrossRefGoogle Scholar
  22. 22.
    Gilden, D.L.: Global model analysis of cognitive variability. Cogn. Sci. 33, 1441–1467 (2009)CrossRefGoogle Scholar
  23. 23.
    Gilden, D.L., Thornton, T., Mallon, M.W.: 1/f noise in human cognition. Science 267, 1837–1839 (1995)CrossRefGoogle Scholar
  24. 24.
    Thornton, T.L., Gilden, D.L.: Provenance of correlations in psychological data. Psychon. Bull. & Rev. 12(3), 409–441 (2005)CrossRefGoogle Scholar
  25. 25.
    Holden, J.G.: Gauging the fractal dimension of response times from cognitive tasks. In: Riley, M.A., Van Orden, G.C. (eds.) Contemporary Nonlinear Methods for Behavioral Scientists, pp. 267–318 (2005),
  26. 26.
    Kello, C.T., Van Orden, G.: Soft-assembly of sensorimotor function. Nonlinear Dynamics Psychol. Life Sci. 13(1), 57–78 (2009)Google Scholar
  27. 27.
    Riley, M.A., Turvey, M.T.: Variability and determinism in motor behavior. J. Motor Behav. 34, 99–125 (2002)CrossRefGoogle Scholar
  28. 28.
    Van Orden, G., Holden, J.G., Turvey, M.T.: Self-organization of cognitive performance. J. Exp. Psychol (Gen.) 132, 331–350 (2003)CrossRefGoogle Scholar
  29. 29.
    Holden, J.G., Van Orden, G., Turvey, M.T.: Dispersion of response times reveals cognitive dynamics. Psychol. Rev. 116, 318–342 (2009)CrossRefGoogle Scholar
  30. 30.
    Van Orden, G., Kello, C.T., Holden, J.G.: Situated behavior and the place of measurement in psychological theory. Ecol. Psychol. 22, 24–43 (2010)CrossRefGoogle Scholar
  31. 31.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  32. 32.
    Turvey, M.T.: Affordances and prospective control: An outline of the ontology. Ecol. Psychol. 4(3), 173–187 (1992)CrossRefGoogle Scholar
  33. 33.
    Delignières, D., Lemoine, L., Torre, K.: Time intervals production in tapping and oscillatory motion. Hum. Mov. Sci. 23, 87–103 (2004)CrossRefGoogle Scholar
  34. 34.
    Delignières, D., Torre, K., Lemoine, L.: Fractal models for event-based and dynamical timers. Acta Psychol. (Amst) 127, 382–397 (2008)CrossRefGoogle Scholar
  35. 35.
    Diniz, A., Wijnants, M.L., Torre, K., Barreiros, J., Crato, N., Bosman, A.M.T., Hasselman, F., Cox, R.F.A., Van Orden, G., Delignières, D.: Contemporary theories of 1/f noise in motor control. Hum. Mov. Sci. (in press) Google Scholar
  36. 36.
    Lemoine, L., Delignières, D.: Detrended Windowed (Lag One) Auto-correlation: A new method for distinguishing between event-based and emergent timing. Q. J. Exp. Psychol. (Colchester) 62, 585–604 (2009)CrossRefGoogle Scholar
  37. 37.
    Wagenmakers, E.-J., Farrell, S., Ratcliff, R.: Estimation and interpretation of 1/fα noise in human cognition. Psychon. Bull. Rev. 11, 579–615 (2004)CrossRefGoogle Scholar
  38. 38.
    Holden, J.G., Choi, I., Amazeen, P.G., Van Orden, G.: Fractal 1/f Dynamics Suggest Entanglement of Measurement and Human Performance. J. Exp. Psychol. (Hum Percept.) 37(3), 935–948 (2011)CrossRefGoogle Scholar
  39. 39.
    Brown, C., Liebovitch, L.: Fractal analysis. Sage, London (2010)CrossRefGoogle Scholar
  40. 40.
    Kello, C.T., Brown, G.D.A., Ferrer-i-Cancho, R., Holden, J.G., Linkenkaer-Hansen, K., Rhodes, T., Van Orden, G.: Scaling laws in cognitive sciences. Trends Cogn. Sci. 14(5), 223–232 (2010)CrossRefGoogle Scholar
  41. 41.
    Kello, C.T., Beltz, B.C., Holden, J.G., Van Orden, G.: The emergent coordination of cognitive function. J. Exp. Psychol. [Gen.] 136(4), 551–568 (2007)CrossRefGoogle Scholar
  42. 42.
    Bak, P.: How Nature Works. In: The Science of Self-organized Criticality. University Press, Oxford (1997)Google Scholar
  43. 43.
    Jensen, H.J.: Organized Criticality. In: Emergent Complex Behavior in Physical and Biological Systems. Univiversity Press, Cambridge (1998)Google Scholar
  44. 44.
    Wijnants, M.L., Bosman, A.M.T., Hasselman, F., Cox, R.F.A., Van Orden, G.: 1/f scaling in movement time changes with practice in precision aiming. Nonlinear Dynamics Psychol. Life Sci. 13, 79–98 (2009)Google Scholar
  45. 45.
    Hausdorff, J.M., Zemany, L., Peng, C.-K., Goldberger, A.L.: Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 86, 1040–1047 (1999)Google Scholar
  46. 46.
    Gresham, L.J., Kloos, H., Wallot, S., Van Orden, G.: Fractals in children’s time estimation: Evidence for developing coordination. In: Proc. Annu. Cogn. Sci. Conf. (2011)Google Scholar
  47. 47.
    Chen, Y., Ding, M., Kelso, J.A.S.: Origins of timing errors in human sensorimotor coordination. J. Motor Behav. 33, 3–8 (2001)CrossRefGoogle Scholar
  48. 48.
    Kuznetsov, N.A., Wallot, S.: Accuracy Feedback in Continuous Temporal Estimation: Changes in the fractal and multifractal spectra (submitted)Google Scholar
  49. 49.
    Van Orden, G., Kloos, H., Wallot, S.: Living in the Pink: Intentionality, Wellbeing, and Complexity. In: Hooker, C.A. (ed.) Philosophy of Complex Systems. Handbook of the Philosophy of Science, vol. 10. Elsevier, Amsterdam (2011)Google Scholar
  50. 50.
    Kloos, H., Van Orden, G.: Voluntary behavior in cognitive and motor tasks. Mind and Matter 8(1), 19–43 (2010)Google Scholar
  51. 51.
    West, B.J.: Where medicine went wrong. In: Rediscovering the Path to Complexity. World Scientific, London (2006)CrossRefGoogle Scholar
  52. 52.
    Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press, Oxford (1967)Google Scholar
  53. 53.
    Michaels, C.F., Carello, C.: Direct perception. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  54. 54.
    Wallot, S., Van Orden, G.: Grounding language in the anticipatory dynamics of the body. Ecol. Psychol. (in press)Google Scholar
  55. 55.
    Van Orden, G.: Voluntary peformance. Medicina 46, 581–594 (2010)Google Scholar
  56. 56.
    Buiatti, M., Papo, D., Baudonnière, P.-M., van Vreeswijk, C.: Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task. Neuroscience 146(3), 1400–1412 (2007)CrossRefGoogle Scholar
  57. 57.
    van Rooij, M., Van Orden, G.: Its about space, its about time, neuroeconomics and the brain sublime. J. Econ. Perspect. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ramon D. Castillo
    • 1
    • 2
  • Guy Van Orden
    • 1
  • Heidi Kloos
    • 1
  1. 1.Center for Cognition, Action and Perception (CAP)University of CincinnatiUSA
  2. 2.Facultad de PsicologiaUniversidad de TalcaTalcaChile

Personalised recommendations