Electrophysiological Evidence for an Accumulation Process in the Timing of Emotional Stimuli

  • Nathalie Mella
  • Viviane Pouthas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6789)


Emotion and time perception are in constant interaction in everyday life activities. While growing literature explored the mechanisms underlying emotional timing, the neural correlates remain unknown. The present experiment explored evoked-related potentials associated to the estimation of emotional sounds duration and to its modulation by attention. Electroencephalographic activity and skin conductance response were recorded during a time estimation task, in which participants were instructed to attend either to time or to emotion. Attending to emotion increased autonomic arousal and lengthened subjective duration of stimuli. Conversely, focusing attention away from emotion decreased physiological arousal and shortened time estimates. ERP results showed that subjective time dilation was associated to enhanced amplitude of the Contingent Negative Variation - a slow negative wave involved in time processing. This result supports models of time perception assuming that subjective time is based on an accumulation process in the brain.


Time perception Emotion ERP CNV Arousal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Droit-Volet, S., Gil, S.: The time-emotion paradox. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1943–1953 (2009)CrossRefGoogle Scholar
  2. 2.
    Dalby, P.-R.: Facial EMG and the subjective experience of emotion in idiopathic Parkinson’s disease in response to affectively laden visual stimuli. Dissertation Abstracts International: Section B: The Sciences and Engineering 55 (1994)Google Scholar
  3. 3.
    Droit-Volet, S., Bigand, E., Ramos, D., Bueno, J.L.: Time flies with music whatever its emotional valence. Acta Psychol (Amst) 135, 226–232 (2010)CrossRefGoogle Scholar
  4. 4.
    Droit-Volet, S., Brunot, S., Niedenthal, P.: Perception of the duration of emotional events. Cognition and Emotion 18, 849–856 (2004)CrossRefGoogle Scholar
  5. 5.
    Mella, N., Conty, L., Pouthas, V.: The role of physiological arousal in time perception: psychophysiological evidence from an emotion regulation paradigm. Brain Cogn. 75, 182–187 (2011)CrossRefGoogle Scholar
  6. 6.
    Noulhiane, M., Mella, N., Samson, S., Ragot, R., Pouthas, V.: How emotional auditory stimuli modulate time perception. Emotion 7, 697–704 (2007)CrossRefGoogle Scholar
  7. 7.
    Tipples, J.: Negative emotionality influences the effects of emotion on time perception. Emotion 8, 127–131 (2008)CrossRefGoogle Scholar
  8. 8.
    Gil, S., Niedenthal, P.M., Droit-Volet, S.: Anger and time perception in children. Emotion 7, 219–225 (2007)CrossRefGoogle Scholar
  9. 9.
    Droit-Volet, S., Tourret, S., Wearden, J.: Perception of the duration of auditory and visual stimuli in children and adults. Q. J. Exp. Psychol. A 57, 797–818 (2004)CrossRefGoogle Scholar
  10. 10.
    Droit-Volet, S., Meck, W.H.: How emotions colour our perception of time. Trends Cogn. Sci. 11, 504–513 (2007)CrossRefGoogle Scholar
  11. 11.
    Church, R.M., Broadbent, H.A.: A connectionist model of timing, in Neural network of conditioning and action. In: Commons, M., Grossberg, S., Staddon, J. (eds.), pp. 225–240. Erlbaum, New York (1991)Google Scholar
  12. 12.
    Gibbon, J., Church, R.M., Meck, W.H.: Scalar timing in memory. Ann. N Y Acad. Sci. 423, 52–77 (1984)CrossRefGoogle Scholar
  13. 13.
    Treisman, M.: Temporal discrimination and the indifference interval. Implications for a model of the ”internal clock”. Psychol. Monogr. 77, 1–31 (1963)CrossRefGoogle Scholar
  14. 14.
    Matell, M.S., Berridge, K.C., Wayne Aldridge, J.: Dopamine D1 activation shortens the duration of phases in stereotyped grooming sequences. Behav. Processes 71, 241–249 (2006)CrossRefGoogle Scholar
  15. 15.
    Meck, W.H.: Neuropharmacology of timing and time perception. Brain Res. Cogn. Brain Res. 3, 227–242 (1996)CrossRefGoogle Scholar
  16. 16.
    Burle, B., Casini, L.: Dissociation between activation and attention effects in time estimation: Implications for clocks models. Journal of Experimental Psychology: Human Perception and Performance 27, 195–205 (2001)Google Scholar
  17. 17.
    Penton-Voak, I.S., Edwards, H., Percival, A., Wearden, J.H.: Speeding up an internal clock in humans? Effects of click trains on subjective duration. J. Exp. Psychol. Anim. Behav. Process 22, 307–320 (1996)CrossRefGoogle Scholar
  18. 18.
    Bendixen, A., Grimm, S., Schroger, E.: Human auditory event-related potentials predict duration judgments. Neurosci. Lett. 383, 284–288 (2005)CrossRefGoogle Scholar
  19. 19.
    Macar, F., Vidal, F., Casini, L.: The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Exp. Brain Res. 125, 271–280 (1999)CrossRefGoogle Scholar
  20. 20.
    Pfeuty, M., Ragot, R., Pouthas, V.: When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Exp. Brain Res. 151, 372–379 (2003)CrossRefGoogle Scholar
  21. 21.
    Praamstra, P., Kourtis, D., Kwok, H.F., Oostenveld, R.: Neurophysiology of implicit timing in serial choice reaction-time performance. J. Neurosci. 26, 5448–5455 (2006)CrossRefGoogle Scholar
  22. 22.
    Ruchkin, D.S., McCalley, M.G., Glaser, E.M.: Event related potentials and time estimation. Psychophysiology 14, 451–455 (1977)CrossRefGoogle Scholar
  23. 23.
    Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., Winter, A.L.: Contingent Negative Variation: An Electric Sign of Sensorimotor Association and Expectancy in the Human Brain. Nature 203, 380–384 (1964)CrossRefGoogle Scholar
  24. 24.
    Pfeuty, M., Ragot, R., Pouthas, V.: Relationship between CNV and timing of an upcoming event. Neurosci. Lett. 382, 106–111 (2005)CrossRefGoogle Scholar
  25. 25.
    Macar, F., Vidal, F.: The CNV peak: an index of decision making and temporal memory. Psychophysiology 40, 950–954 (2003)CrossRefGoogle Scholar
  26. 26.
    Durstewitz, D.: Neural representation of interval time. Neuroreport 15, 745–749 (2004)CrossRefGoogle Scholar
  27. 27.
    Reutimann, J., Yakovlev, V., Fusi, S., Senn, W.: Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295–3303 (2004)CrossRefGoogle Scholar
  28. 28.
    Bradley, M.M., Lang, P.J.: International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings, in Technical Report C-1, Psychophysiology, T.C.f.R.I., Editor: University of Florida (1999)Google Scholar
  29. 29.
    Cacioppo, J.T., Tassinary, L.G., Berntson, G.G.: Hanbook of psychophysiology. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.). Cambridge University Press, Cambridge (2007)Google Scholar
  30. 30.
    Gratton, G., Coles, M.G., Donchin, E.: A new method for off-line removal of ocular artifact. Electroencephalogr Clin. Neurophysiol. 55, 468–484 (1983)CrossRefGoogle Scholar
  31. 31.
    Belin, P., McAdams, S., Thivard, L., Smith, B., Savel, S., Zilbovicius, M., Samson, S., Samson, Y.: The neuroanatomical substrate of sound duration discrimination. Neuropsychologia 40, 1956–1964 (2002)CrossRefGoogle Scholar
  32. 32.
    Coull, J.T.: fMRI studies of temporal attention: allocating attention within, or towards, time. Brain Res. Cogn. Brain Res. 21, 216–226 (2004)CrossRefGoogle Scholar
  33. 33.
    Kagerer, F.A., Wittmann, M., Szelag, E., Steinbuchel, N.: Cortical involvement in temporal reproduction: evidence for differential roles of the hemispheres. Neuropsychologia 40, 357–366 (2002)CrossRefGoogle Scholar
  34. 34.
    Monfort, V., Pouthas, V., Ragot, R.: Role of frontal cortex in memory for duration: an event-related potential study in humans. Neurosci. Lett. 286, 91–94 (2000)CrossRefGoogle Scholar
  35. 35.
    Pouthas, V., Garnero, L., Ferrandez, A.M., Renault, B.: ERPs and PET analysis of time perception: spatial and temporal brain mapping during visual discrimination tasks. Hum. Brain Mapp. 10, 49–60 (2000)CrossRefGoogle Scholar
  36. 36.
    Macar, F., Vidal, F., Casini, L.: The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp. Brain Res. 125, 271–280 (1999)CrossRefGoogle Scholar
  37. 37.
    Meck, W.H., Penney, T.B., Pouthas, V.: Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol. 18, 145–152 (2008)CrossRefGoogle Scholar
  38. 38.
    Jech, R., Dusek, P., Wackermann, J., Vymazal, J.: Cumulative blood oxygenation-level-dependent signal changes support the ’time accumulator’ hypothesis. Neuroreport 16, 1467–1471 (2005)CrossRefGoogle Scholar
  39. 39.
    Wittmann, M., Simmons, A., Aron, J., Paulus, M.P.: Accumulation of neural activity in the posterior insula encodes the passage of time. Natu. Precedings See (2008)Google Scholar
  40. 40.
    Nagai, Y., Critchley, H.D., Featherstone, E., Fenwick, P.B., Trimble, M.R., Dolan, R.J.: Brain activity relating to the contingent negative variation: an fMRI investigation. NeuroImage 21, 1232–1241 (2004)CrossRefGoogle Scholar
  41. 41.
    Craig, A.D.: How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002)CrossRefGoogle Scholar
  42. 42.
    Critchley, H.D., Wiens, S., Rotshtein, P., Ohman, A., Dolan, R.J.: Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189–195 (2004)CrossRefGoogle Scholar
  43. 43.
    Craig, A.D.: Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 1933–1942 (2009)CrossRefGoogle Scholar
  44. 44.
    Tecce, J.J.: Contingent negative variation (CNV) and psychological processes in man. Psychol. Bull. 77, 73–108 (1972)CrossRefGoogle Scholar
  45. 45.
    Wittmann, M.: The inner experience of time. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 1955–1967 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nathalie Mella
    • 1
    • 2
  • Viviane Pouthas
    • 2
  1. 1.University of GenevaGenevaSwitzerland
  2. 2.Unit of Cognitive Neurosciences and Cerebral Imaging, CNRSParisFrance

Personalised recommendations