Enhanced Audiovisual Temporal Sensitivity When Viewing Videos That Appropriately Depict the Effect of Gravity on Object Movement

  • Argiro Vatakis
  • Charles Spence
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6789)


We report a study designed to examine how knowledge of the effects of gravity may change the temporal processing of audiovisual events. Specifically, normally-oriented and inverted audiovisual video-clips of different objects being dropped were presented at a range of different stimulus onset asynchronies. Participants made temporal order judgments regarding whether the auditory/visual stream appeared to have been presented first. The results revealed that inverting the visual-display of the falling object led to a significant difference in participant’s ability to judge the temporal order of the auditory/ visual components of the desynchronized video-clips. That is, participants were more sensitive to audiovisual asynchrony when viewing normally-oriented video-clips of the falling object as compared to viewing the same clips inverted. These results demonstrate that people’s understanding of the effects of gravity on object movement can affect their temporal sensitivity when violations of the fundamental physical parameters determining the movement of real objects are introduced.


Gravity Inversion Temporal perception Multisensory Audition Vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baures, R., Benguigui, N., Amorim, M.A., Siegler, I.A.: Intercepting free falling objects: Better use Occam’s razor than internalize Newton’s law. Vis. Res. 47, 2982–2991 (2007)CrossRefGoogle Scholar
  2. 2.
    Kim, I.K., Spelke, E.S.: Infants’ sensitivity to effects of gravity on visible object motion. J Exp. Psychol. JEP 18, 385–393 (1992)Google Scholar
  3. 3.
    Shanon, B.: Aristotelianism, Newtonianism and the physics of the layman. Percept. 5, 241–243 (1976)CrossRefGoogle Scholar
  4. 4.
    Zago, M., Lacquaniti, F.: Visual perception and interception of falling objects: A review of evidence for an internal model of gravity. J. Neural Eng. 2, 198–208 (2005)CrossRefGoogle Scholar
  5. 5.
    Friedman, W.J.: Arrows of time in infancy: The representation of temporal-causal invariances. Cognit. Psychol. 44, 252–296 (2002)CrossRefGoogle Scholar
  6. 6.
    Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., Lacquanita, F.: Representation of visual gravitational motion in the human vestibular cortex. Sci. 308, 416–419 (2005)CrossRefGoogle Scholar
  7. 7.
    Kim, I.K., Spelke, E.S.: Perception and understanding of effects of gravity and inertia on object motion. Dev. Sci. 2, 339–362 (1999)CrossRefGoogle Scholar
  8. 8.
    Lacquaniti, F., Carrozzo, M., Borghese, N.A.: Time-varying mechanical behavior of multi-jointed arm in man. J. Neurophysiol. 69, 1443–1464 (1993)Google Scholar
  9. 9.
    McBeath, M.K., Shaffer, D.M., Kaiser, M.K.: How baseball outfielders determine where to run to catch fly balls. Sci. 268, 569–573 (1995)CrossRefGoogle Scholar
  10. 10.
    Twardy, C.R., Bingham, G.P.: Causation, causal perception, and conservation laws. Percept. & Psychophys. 64, 956–968 (2002)CrossRefGoogle Scholar
  11. 11.
    Muchisky, M.M., Bingham, G.P.: Perceiving size in events via kinematic form. In: Kruschke, J.K. (ed.) Proceedings of the 14th Annual Conference of the Cognitive Science Society, pp. 1002–1007. Erlbaum, Hillsdale (1992)Google Scholar
  12. 12.
    Watson, J.S., Banks, M.S., von Hofsten, C., Royden, C.S.: Gravity as a monocular cue for perception of absolute distance and/or absolute size. Percept. 21, 69–76 (1992)CrossRefGoogle Scholar
  13. 13.
    Jokisch, D., Troje, N.F.: Biological motion as a cue for the perception of size. J. Vis. 3, 252–264 (2003)CrossRefGoogle Scholar
  14. 14.
    Spottiswoode, R.: The focal encyclopedia of film and television techniques. Hastings House, New York (1969)Google Scholar
  15. 15.
    Howard, I.P.: Human visual orientation. Wiley, New York (1982)Google Scholar
  16. 16.
    Schone, H.: Spatial orientation (C. Strausfeld, trans.).Princeton University Press, Princeton (1984)Google Scholar
  17. 17.
    Shepard, R.N.: Perceptual-cognitive universals as reflections of the world. Psychonomic Bull. Rev. 1, 2–28 (1994)CrossRefGoogle Scholar
  18. 18.
    Smetacek, V.: Balance: Mind-grasping gravity. Nat. 415, 481 (2002)CrossRefGoogle Scholar
  19. 19.
    McIntyre, J., Zago, M., Berthoz, A., Lacquaniti, F.: Does the brain model Newton’s laws? Nat. Neurosci. 4, 693–694 (2001)CrossRefGoogle Scholar
  20. 20.
    Vatakis, A., Spence, C.: Investigating the effects of inversion on configural processing with an audiovisual temporal-order judgment task. Percept. 37, 143–160 (2008)CrossRefGoogle Scholar
  21. 21.
    Spence, C., Shore, D.I., Klein, R.M.: Multisensory prior entry. J Exp. Psychol. Gen. 130, 799–832 (2001)CrossRefGoogle Scholar
  22. 22.
    Finney, D.J.: Probit analysis: Statistical treatment of the sigmoid response curve. Cambridge University Press, London (1964)zbMATHGoogle Scholar
  23. 23.
    Coren, S., Ward, L.M., Enns, J.T.: Sensation & perception, 6th edn. Harcourt Brace, Fort Worth (2004)Google Scholar
  24. 24.
    Cohen, J., Hansel, C.E.M., Sylvester, J.D.: A new phenomenon in time judgment. Nat. 172, 901 (1953)CrossRefGoogle Scholar
  25. 25.
    Masuda, T., Wada, Y., Noguchi, K.: The role of represented direction of gravity force in time perception: Which is more important, physical or phenomenal direction? Percept. 34(ECVP Abstract Supplement) (2005)Google Scholar
  26. 26.
    Wada, Y., Masuda, T., Noguchi, K.: Temporal illusion called ‘kappa effect’ in event perception. Percept. 34(ECVP Abstract Supplement) (2005)Google Scholar
  27. 27.
    Vatakis, A., Spence, C.: How ‘special’ is the human face? Evidence from an audiovisual temporal order judgment task. Neuroreport 18, 1807–1811 (2007)CrossRefGoogle Scholar
  28. 28.
    Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G.: Electrophysiological studies of face perception in humans. J Cognit. Neurosci. 8, 551–565 (1996)CrossRefGoogle Scholar
  29. 29.
    Fonseca, J.V., Soares, T.M.B., Nascimento, S.M.C.: Visual sensitivity to changes in acceleration of gravity tested with free-falling objects. Percept. 34(ECVP Abstract Supplement ) (2005)Google Scholar
  30. 30.
    Danckert, J., Goodale, M.A.: Superior performance for visually guided movements in the inferior visual field. Exp. Brain Res. 137, 303–308 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Argiro Vatakis
    • 1
    • 2
  • Charles Spence
    • 1
  1. 1.Crossmodal Research Laboratory, Department of Experimental PsychologyUniversity of OxfordU.K.
  2. 2.Cognitive Systems Research Institute (CSRI)AthensGreece

Personalised recommendations