Partial Order Methods for Statistical Model Checking and Simulation

  • Jonathan Bogdoll
  • Luis María Ferrer Fioriti
  • Arnd Hartmanns
  • Holger Hermanns
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6722)


Statistical model checking has become a promising technique to circumvent the state space explosion problem in model-based verification. It trades time for memory, via a probabilistic simulation and exploration of the model behaviour—often combined with effective a posteriori hypothesis testing. However, as a simulation-based approach, it can only provide sound verification results if the underlying model is a stochastic process. This drastically limits its applicability in verification, where most models are indeed variations of nondeterministic transition systems. In this paper, we describe a sound extension of statistical model checking to scenarios where nondeterminism is present. We focus on probabilistic automata, and discuss how partial order reduction can be twisted such as to apply statistical model checking to models with spurious nondeterminism. We report on an implementation of this technique and on promising results in the context of verification and dependability analysis of distributed systems.


Partial Order Model Check Probabilistic Choice Parallel Composition Memory Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Andel, T.R., Yasinsac, A.: On the credibility of MANET simulations. IEEE Computer 39(7), 48–54 (2006)CrossRefGoogle Scholar
  3. 3.
    Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction for probabilistic branching time. Electr. Notes Theor. Comput. Sci. 153(2), 97–116 (2006)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  5. 5.
    Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J., Zucca, E. (eds.) FMOODS 2010. LNCS, vol. 6117, pp. 32–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE Transactions on Software Engineering 32(10), 812–830 (2006)CrossRefGoogle Scholar
  7. 7.
    Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architectural dependability evaluation with Arcade. In: DSN, pp. 512–521. IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  8. 8.
    Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: POMC, pp. 38–43. ACM, New York (2002)CrossRefGoogle Scholar
  9. 9.
    Giro, S., D’Argenio, P.R., Ferrer Fioriti, L.M.: Partial order reduction for probabilistic systems: A revision for distributed schedulers. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems – An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  11. 11.
    Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST, pp. 187–196. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  12. 12.
    Katoen, J.P., van de Pol, J., Stoelinga, M., Timmer, M.: A linear process algebraic format for probabilistic systems with data. In: ACSD, pp. 213–222. IEEE Computer Society, Los Alamitos (2010)Google Scholar
  13. 13.
    Katoen, J.P., Zapreev, I.S.: Simulation-based CTMC model checking: An empirical evaluation. In: QEST, pp. 31–40. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  14. 14.
    Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Law, A.M., Kelton, D.W.: Simulation Modelling and Analysis. McGraw-Hill Education, Europe (2000)zbMATHGoogle Scholar
  16. 16.
    Maaß, S.: Translating Arcade models into MoDeST code. B.Sc. Thesis (May 2010)Google Scholar
  17. 17.
    Minea, M.: Partial order reduction for model checking of timed automata. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. Ph.D. thesis, University of Birmingham (2002)Google Scholar
  19. 19.
    Peled, D.: Combining partial order reductions with on-the-fly model-checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  20. 20.
    Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis. MIT, Cambridge (1995)Google Scholar
  21. 21.
    Stoelinga, M.: Alea jacta est: Verification of Probabilistic, Real-Time and Parametric Systems. Ph.D. thesis. Katholieke U. Nijmegen, The Netherlands (2002)Google Scholar
  22. 22.
    Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  23. 23.
    Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. Statistical probabilistic model checking: An empirical study. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to simulink/stateflow verification. In: HSCC, pp. 243–252. ACM, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jonathan Bogdoll
    • 1
  • Luis María Ferrer Fioriti
    • 1
  • Arnd Hartmanns
    • 1
  • Holger Hermanns
    • 1
  1. 1.Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations