String Comparison and Lyndon-Like Factorization Using V-Order in Linear Time

  • David E. Daykin
  • Jacqueline W. Daykin
  • W. F. Smyth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)


In this paper we extend previous work on Unique Maximal Factorization Families (UMFFs) and a total (but non-lexicographic) ordering of strings called V-order. We describe linear-time algorithms for string comparison and Lyndon factorization based on V-order. We propose extensions of these algorithms to other forms of order.


Large Letter Star Tree String Comparison Choose Ciphertext Attack Lyndon Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chemillier, M.: Periodic musical sequences and Lyndon words. In: Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 8-9, pp. 611–616. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler transformation. In: Scientific Commons (2005),
  3. 3.
    Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV — the quotient groups of the lower central series. Ann. Math. 68, 81–95 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Daykin, D.E.: Ordered ranked posets, representations of integers and inequalities from extremal poset problems. In: Rival, I. (ed.) Graphs and order, Proceedings of a Conference in Banff (1984). NATO Advanced Sciences Institutes Series C: Mathematical and Physical Sciences, vol. 147, pp. 395–412. Reidel, Dordrecht-Boston (1985)Google Scholar
  5. 5.
    Daykin, D.E.: Algorithms for the Lyndon unique maximal factorization. J. Combin. Math. Combin. Comput. (to appear)Google Scholar
  6. 6.
    Danh, T.-N., Daykin, D.E.: The structure of V-order for integer vectors. In: Hilton, A.J.W. (ed.) Congr. Numer., vol. 113, pp. 43–53 (1996)Google Scholar
  7. 7.
    Daykin, D.E., Daykin, J.W.: Lyndon-like and V-order factorizations of strings. J. Discrete Algorithms 1–3/4, 357–365 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daykin, D.E., Daykin, J.W.: Properties and construction of unique maximal factorization families for strings. Internat. J. Found. Comput. Sci. 19–4, 1073–1084 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daykin, D.E., Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Generic algorithms for factoring strings (in preparation)Google Scholar
  10. 10.
    Daykin, D.E., Daykin, J.W., (Bill) Smyth, W.F.: Combinatorics of Unique Maximal Factorization Families (UMFFs). Fund. Inform. 97–3, Special StringMasters Issue Janicki, R., Puglisi, S.J., Rahman, M.S. (eds.), pp. 295–309 (2009)Google Scholar
  11. 11.
    Daykin, D.E., Daykin, J.W., Smyth, W.F.: Sequential and Parallel Algorithms for Lyndon Factorization using V -Order (in preparation)Google Scholar
  12. 12.
    Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factorizing words. Theoret. Comput. Sci. 127, 53–67 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Delgrange, O., Rivals, E.: STAR: an algorithm to Search for Tandem Approximate Repeats. Bioinformatics 20–16, 2812–2820 (2004)CrossRefGoogle Scholar
  14. 14.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4, 363–381 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gil, J., Scott, D.A.: A bijective string sorting transform (submitted)Google Scholar
  16. 16.
    Iliopoulos, C.S., Smyth, W.F.: Optimal algorithms for computing the canonical form of a circular string. Theoret. Comput. Sci. 92–1, 87–105 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983); 2nd edn. Cambridge University Press, Cambridge (1997).zbMATHGoogle Scholar
  18. 18.
    Perret, L.: A chosen ciphertext attack on a public key cryptosystem based on Lyndon words. In: Proc. International Workshop on Coding and Cryptography, pp. 235–244 (2005)Google Scholar
  19. 19.
    Reutenauer, C.: Free Lie algebras, London Math. Soc. Monographs New Ser., vol. 7, p. 288. Oxford University Press, Oxford (1993)Google Scholar
  20. 20.
    Smyth, B.: Computing patterns in strings. p. 423. Pearson, Addison-Wesley (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David E. Daykin
    • 1
  • Jacqueline W. Daykin
    • 2
    • 4
  • W. F. Smyth
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of ReadingUK
  2. 2.Department of Computer ScienceRoyal Holloway & King’s College, University of LondonUK
  3. 3.Algorithms Research Group, Department of Computing & SoftwareMcMaster UniversityHamiltonCanada
  4. 4.Centre for Stringology & Applications Digital Ecosystems & Business Intelligence InstituteCurtin UniversityPerthAustralia

Personalised recommendations