Tractability and Approximability of Maximal Strip Recovery

  • Laurent Bulteau
  • Guillaume Fertin
  • Minghui Jiang
  • Irena Rusu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)


An essential task in comparative genomics is usually to decompose two or more genomes into synteny blocks, that is, segments of chromosomes with similar contents. In this paper, we study the Maximal Strip Recovery problem (MSR) [Zheng et al. 07], which aims at finding an optimal decomposition of a set of genomes into synteny blocks, amidst possible noise and ambiguities. We present a panel of new or improved FPT and approximation algorithms for the MSR problem and its variants. Our main results include the first FPT algorithm for the variant δ-gap-MSR-d, an FPT algorithm for CMSR-d and δ-gap-CMSR-d running in time O(2.360 k poly(nd)), where k is the number of markers or genes considered as erroneous, and a (d + 1.5)-approximation algorithm for CMSR-d and δ-gap-CMSR-d.


Approximation Algorithm Approximation Ratio Function Recurse Recursive Call Positive Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: Hardness and approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 710–719. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. Journal of Combinatorial Optimization 18, 307–318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Halldórsson, M.M.: Approximating discrete collections via local improvements. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pp. 160–169 (1995)Google Scholar
  5. 5.
    Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the complementary maximal strip recovery problem. In: Journal of Combinatorial Optimization (to appear), doi:10.1007/s10878-010-9366-yGoogle Scholar
  6. 6.
    Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Jiang, M.: On the parameterized complexity of some optimization problems related to multiple-interval graphs. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 125–137. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Jiang, M.: Inapproximability of maximal strip recovery: II. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 53–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 400–409. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4, 515–522 (2007)CrossRefGoogle Scholar
  11. 11.
    Zhu, B.: Efficient exact and approximate algorithms for the complement of maximal strip recovery. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 325–333. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Laurent Bulteau
    • 1
  • Guillaume Fertin
    • 1
  • Minghui Jiang
    • 2
  • Irena Rusu
    • 1
  1. 1.Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241Université de NantesNantes Cedex 3France
  2. 2.Department of Computer ScienceUtah State UniversityLoganUSA

Personalised recommendations