A Combinatorial Model of Phyllotaxis Perturbations in Arabidopsis thaliana

  • Yassin Refahi
  • Etienne Farcot
  • Yann Guédon
  • Fabrice Besnard
  • Teva Vernoux
  • Christophe Godin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)

Abstract

Phyllotaxis is the geometric arrangement of organs in plants, and is known to be highly regular. However, experimental data (from Arabidopsis thaliana) show that this regularity is in fact subject to specific patterns of permutations. In this paper we introduce a model for these patterns, as well as algorithms designed to identify these patterns in noisy experimental data. These algorithms thus incorporate a denoising step which is based on Gaussian-like distributions for circular data for which a common dispersion parameter has been previously estimated. The application of the proposed algorithms allows us to confirm the plausibility of the proposed model, and to characterize the patterns observed in a specific mutant. The algorithms are available in the OpenAlea software platform for plant modelling [10].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, I., Barabé, D., Jean, R.V.: A History of the Study of Phyllotaxis. Annals of Botany 80(3), 231–244 (1997)CrossRefGoogle Scholar
  2. 2.
    Couder, Y.: Initial transitions, order and disorder in phyllotactic patterns: the ontogeny of Helianthus annuus. A case study. Acta Societatis Botanicorum Poloniae 67, 129–150 (1998)CrossRefGoogle Scholar
  3. 3.
    Douady, S., Couder, Y.: Phyllotaxis as a self organizing process: I,II,III. Journal of Theoretical Biology 178, 255–312 (1996)CrossRefGoogle Scholar
  4. 4.
    Jeune, B., Barabé, J.: Statistical Recognition of Random and Regular Phyllotactic Patterns. Annals of Botany 94, 913–917 (2004)CrossRefGoogle Scholar
  5. 5.
    Jeune, B., Barabé, J.: A stochastic approach to phyllotactic pattern analysis. Journal of Theoretical Biology 238, 52–59 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kuhlemeier, C.: Phyllotaxis. Trends in Plant Science 12, 143–150 (2007)CrossRefGoogle Scholar
  7. 7.
    Mardia, K.V., Jupp, P.E.: Directional Statistics. John Wiley & Sons, Chichester (2000)MATHGoogle Scholar
  8. 8.
    Parida, L.: Pattern Discovery in Bioinformatics: Theory & Algorithms. CRC Mathematical Computational Biology Series. Chapman & Hall, Sydney (2008)MATHGoogle Scholar
  9. 9.
    Refahi, Y., Guédon, Y., Besnard, F., Farcot, E., Godin, C., Vernoux, T.: Analyzing perturbations in phyllotaxis of Arabidopsis thaliana. In: 6th International Workshop on Functional-Structural Plant Models, Davis, California, pp. 170–172 (2010)Google Scholar
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yassin Refahi
    • 1
  • Etienne Farcot
    • 1
  • Yann Guédon
    • 1
  • Fabrice Besnard
    • 2
  • Teva Vernoux
    • 2
  • Christophe Godin
    • 1
  1. 1.CIRAD/INRA/INRIA, Virtual Plants INRIA team, UMR AGAPMontpellier Cedex 5France
  2. 2.RDP, ENS/CNRS/INRA/Univ. LyonLYON cedex 07France

Personalised recommendations