Faster Subsequence and Don’t-Care Pattern Matching on Compressed Texts

  • Takanori Yamamoto
  • Hideo Bannai
  • Shunsuke Inenaga
  • Masayuki Takeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)


Subsequence pattern matching problems on compressed text were first considered by Cégielski et al. (Window Subsequence Problems for Compressed Texts, Proc. CSR 2006, LNCS 3967, pp. 127–136), where the principal problem is: given a string T represented as a straight line program (SLP) \(\mathcal{T}\) of size n, a string P of size m, compute the number of minimal subsequence occurrences of P in T. We present an O(nm) time algorithm for solving all variations of the problem introduced by Cégielski et al.. This improves the previous best known algorithm of Tiskin (Towards approximate matching in compressed strings: Local subsequence recognition, Proc. CSR 2011), which runs in O(nmlogm) time. We further show that our algorithms can be modified to solve a wider range of problems in the same O(nm) time complexity, and present the first matching algorithms for patterns containing VLDC (variable length don’t care) symbols, as well as for patterns containing FLDC (fixed length don’t care) symbols, on SLP compressed texts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R.A.: Searching subsequences. Theoretical Computer Science 78(2), 363–376 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baturo, P., Rytter, W.: Compressed string-matching in standard sturmian words. Theoretical Computer Science 410(30–32), 2804–2810 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cégielski, P., Guessarian, I., Lifshits, Y., Matiyasevich, Y.: Window subsequence problems for compressed texts. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 127–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Claude, F., Navarro, G.: Self-indexed text compression using straight-line programs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for accelerating edit-distance computation via text-compression. In: Proc. STACS 2009, pp. 529–540 (2009)Google Scholar
  6. 6.
    Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. Data Compression Conference 1999, pp. 296–305. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  9. 9.
    Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)CrossRefGoogle Scholar
  11. 11.
    Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of hierarchical grammars. In: Data Compression Conference 1994, pp. 244–253. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  13. 13.
    Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Tiskin, A.: Faster subsequence recognition in compressed strings. J. Math. Sci. 158(5), 759–769 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tiskin, A.: Towards approximate matching in compressed strings: Local subsequence recognition. In: Proc. CSR 2011 (to appear, 2011)Google Scholar
  16. 16.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337–349 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Takanori Yamamoto
    • 1
  • Hideo Bannai
    • 1
  • Shunsuke Inenaga
    • 2
  • Masayuki Takeda
    • 1
  1. 1.Department of InformaticsKyushu UniversityNishikuJapan
  2. 2.Graduate School of Information Science and Electrical EngineeringKyushu UniversityNishikuJapan

Personalised recommendations