CPM 2011: Combinatorial Pattern Matching pp 232-245

# Palindrome Pattern Matching

• Tomohiro I.
• Shunsuke Inenaga
• Masayuki Takeda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)

## Abstract

A palindrome is a string that reads the same forward and backward. For a string x, let Pals(x) be the set of all maximal palindromes of x, where each maximal palindrome in Pals(x) is encoded by a pair (c, r) of its center c and its radius r. Given a text t of length n and a pattern p of length m, the palindrome pattern matching problem is to compute all positions i of t such that Pals(p) = Pals(t[i:i + m − 1]). We present linear-time algorithms to solve this problem.

Burrows Palin

## Preview

### References

1. 1.
Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theoretical Computer Science 292(1), 9–31 (2003)
2. 2.
Anisiu, M.C., Anisiu, V., Kása, Z.: Total palindrome complexity of finite words. Discrete Mathematics 310(1), 109–114 (2010)
3. 3.
Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences 52(1), 28–42 (1996)
4. 4.
Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal of Foundations of Computer Science 15(2), 293–306 (2004)
5. 5.
Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech. rep., DIGITAL System Research Center (1994)Google Scholar
6. 6.
Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)
7. 7.
Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European Journal of Combinatorics 30(2), 510–531 (2009)
8. 8.
Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in linear time. Information Processing Letters 110(20), 908–912 (2010)
9. 9.
Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)
10. 10.
Hsu, P.H., Chen, K.Y., Chao, K.M.: Finding all approximate gapped palindromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1084–1093. Springer, Heidelberg (2009)
11. 11.
I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal palindromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 135–146. Springer, Heidelberg (2010)
12. 12.
Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science 410(51), 5365–5373 (2009)
13. 13.
Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)
14. 14.
Massé, A.B., Brlek, S., Frosini, A., Labbé, S., Rinaldi, S.: Reconstructing words from a fixed palindromic length sequence. Proc. TCS 2008. IFIP 273, 101–114 (2008)
15. 15.
Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Tech. Rep. 40, University of California, Berkeley (1970)Google Scholar
16. 16.
Restivo, A., Rosone, G.: Burrows-Wheeler transform and palindromic richness. Theoretical Computer Science 410(30–32), 3018–3026 (2009)
17. 17.
Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)