On Wavelet Tree Construction

  • German Tischler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)


The wavelet tree is a compact data structure allowing fast rank, select, access and other queries on non binary sequences. It has many applications in indexed pattern matching and data compression. In contrast to applications of wavelet trees their construction has so far been paid little attention. In this paper we discuss time and space efficient algorithms for constructing wavelet trees.


Block Code Sorting Algorithm Additional Space Additional Memory Left Child 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. Inf. Comput. 207(8), 849–866 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An alphabet-friendly FM-index. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 150–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Franceschini, G., Muthukrishnan, S.M., Pǎtraşcu, M.: Radix sorting with no extra space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 194–205. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Gagie, T., Puglisi, S., Turpin, A.: Range quantile queries: Another virtue of wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 1–6. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: SODA, pp. 841–850 (2003)Google Scholar
  6. 6.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the Institute of Radio Engineers 40(9), 1098–1101 (1952)zbMATHGoogle Scholar
  7. 7.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kronrod, M.A.: Optimal ordering algorithm without operational field. Soviet Math. Dokl. 10, 744–746 (1969)zbMATHGoogle Scholar
  9. 9.
    Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoretical Computer Science 387(3), 332–347 (2007); The Burrows-Wheeler TransformMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Salowe, J., Steiger, W.: Simplified stable merging tasks. J. Algorithms 8(4), 557–571 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • German Tischler
    • 1
  1. 1.Institut für InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations