Tractability Results for the Consecutive-Ones Property with Multiplicity

  • Cedric Chauve
  • Ján Maňuch
  • Murray Patterson
  • Roland Wittler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6661)


A binary matrix has the Consecutive-Ones Property (C1P) if its columns can be ordered in such a way that all 1’s in each row are consecutive. We consider here a variant of the C1P where columns can appear multiple times in the ordering. Although the general problem of deciding the C1P with multiplicity is NP-complete, we present here a case of interest in comparative genomics that is tractable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, Z., Turmel, M., Lemieux, C., Sankoff, D.: Common intervals and symmetric difference in a model-free phylogenomics, with an application to streptophyte evolution. J. Comput. Biol. 14, 436–445 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes using unique probes. J. Comput. Biol. 2, 159–184 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity. J. Comput. Syst. Sci. 13, 335–379 (1976)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, paper e1000234 (2008)Google Scholar
  5. 5.
    Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci. 234, 59–84 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Landau, G.M., Parida, L., Weimann, O.: Gene proximity analysis across whole genomes via PQ trees. J. Comput. Biol. 12, 1289–1306 (2005)CrossRefGoogle Scholar
  7. 7.
    Lu, W.-F., Hsu, W.-L.: A test for the Consecutive Ones Property on noisy data – application to physical mapping and sequence assembly. J. Comput. Biol. 10, 709–735 (2003)CrossRefGoogle Scholar
  8. 8.
    Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006)CrossRefGoogle Scholar
  9. 9.
    McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: SODA 2004, pp. 761–770. ACM, New York (2004)Google Scholar
  10. 10.
    Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete Appl. Math. 88, 325–354 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hsu, W.-L.: A simple test for the Consecutive Ones Property. J. Algorithms 43, 1–16 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wittler, R., Stoye, J.: Consistency of sequence-based gene clusters. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 252–263. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Wittler, R., Maňuch, J., Patterson, M., Stoye, J.: Consistency of sequence-based gene clusters (unpublished manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cedric Chauve
    • 1
  • Ján Maňuch
    • 1
    • 2
  • Murray Patterson
    • 2
  • Roland Wittler
    • 1
    • 3
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Computer ScienceUBCVancouverCanada
  3. 3.Technische FakultätUniversität BielefeldBielefeldGermany

Personalised recommendations