Advertisement

Introduction to Active Automata Learning from a Practical Perspective

  • Bernhard Steffen
  • Falk Howar
  • Maik Merten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6659)

Abstract

In this chapter we give an introduction to active learning of Mealy machines, an automata model particularly suited for modeling the behavior of realistic reactive systems. Active learning is characterized by its alternation of an exploration phase and a testing phase. During exploration phases so-called membership queries are used to construct hypothesis models of a system under learning. In testing phases so-called equivalence queries are used to compare respective hypothesis models to the actual system. These two phases are iterated until a valid model of the target system is produced.

We will step-wisely elaborate on this simple algorithmic pattern, its underlying correctness arguments, its limitations, and, in particular, ways to overcome apparent hurdles for practical application. This should provide students and outsiders of the field with an intuitive account of the high potential of this challenging research area in particular concerning the control and validation of evolving reactive systems.

Keywords

Span Tree Practical Perspective Automaton Learn Hypothesis Model Membership Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75(2), 87–106 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balcázar, J.L., Díaz, J., Gavaldà, R.: Algorithms for Learning Finite Automata from Queries: A Unified View. In: Advances in Algorithms, Languages, and Complexity, pp. 53–72 (1997)Google Scholar
  5. 5.
    Bennaceur, A., Blair, G.S., Chauvel, F., Georgantas, N., Grace, P., Howar, F., Inverardi, P., Issarny, V., Paolucci, M., Pathak, A., Spalazzese, R., Steffen, B., Souville, B.: Towards an Architecture for Runtime Interoperability. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 206–220. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with parameters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using domains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 317–331. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Bertolino, A., Calabro, A., Di Giandomenico, F., Nostro, N.: Dependability and Performance Assessment of Dynamic CONNECTed Systems. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Blair, G.S., Paolucci, M., Grace, P., Georgantas, N.: Interoperability in Complex Distributed Systems. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)Google Scholar
  11. 11.
    Bohlin, T., Jonsson, B.: Regular Inference for Communication Protocol Entities. Technical report, Department of Information Technology, Uppsala University, Schweden (2009)Google Scholar
  12. 12.
    Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Replaying play in and play out: Synthesis of design models from scenarios by learning. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 435–450. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: smyle: A tool for synthesizing distributed models from scenarios by learning. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 162–166. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.: Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  15. 15.
    Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE Trans. on Software Engineering 4(3), 178–187 (1978)CrossRefzbMATHGoogle Scholar
  16. 16.
    Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an Interactive Learning Competition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009. LNCS, vol. 6062, Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, New York (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 206–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test Selection Based on Finite State Models. IEEE Trans. on Software Engineering 17(6), 591–603 (1991)CrossRefGoogle Scholar
  21. 21.
    Grace, P., Georgantas, N., Bennaceur, A., Blair, G., Chauvel, F., Issarny, V., Paolucci, M., Saadi, R., Souville, B., Sykes, D.: The CONNECT Architecture. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated regular extrapolation. LNCS, pp. 80–95. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  24. 24.
    Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient regression testing of CTI-systems: Testing a complex call-center solution. Annual Review of Communication, Int. Engineering Consortium (IEC) 55, 1033–1040 (2001)Google Scholar
  25. 25.
    Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. Technical report, Stanford, CA, USA (1971)Google Scholar
  26. 26.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation, 2nd edn. Addison-Wesley series in computer science. Addison-Wesley-Longman, Amsterdam (2001)zbMATHGoogle Scholar
  27. 27.
    Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On Handling Data in Automata Learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 221–235. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - Lessons Learned in the ZULU Challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Howar, F., Steffen, B., Merten, M., Margaria, T.: Practical Aspects of Active Learning. FMICS Handbook on Industrial Critical Systems. Wiley, Chichester (to appear, 2011)Google Scholar
  31. 31.
    Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Hungar, H., Steffen, B.: Behavior-based model construction. Int. J. Softw. Tools Technol. Transf. 6(1), 4–14 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Inverardi, P., Spalazzese, R., Tivoli, M.: Application-layer Connector Synthesis. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-layer Connector Synthesis. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)Google Scholar
  35. 35.
    Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z., Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS, pp. 154–161 (2009)Google Scholar
  36. 36.
    Jonsson, B.: Machine Learning and Data. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)Google Scholar
  37. 37.
    Jung, G., Margaria, T., Wagner, C., Bakera, M.: Formalizing a Methodology for Design- and Runtime Self-Healing. In: IEEE International Workshop on Engineering of Autonomic and Autonomous Systems, pp. 106–115 (2010)Google Scholar
  38. 38.
    Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)Google Scholar
  39. 39.
    Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verification for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  40. 40.
    Maler, O., Pnueli, A.: On the Learnability of Infinitary Regular Sets. Information and Computation 118(2), 316–326 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for legacy reactive systems. In: HLDVT 2004: Proceedings of the Ninth IEEE International High-Level Design Validation and Test Workshop, pp. 95–100. IEEE Computer Society, Washington, DC (2004)Google Scholar
  42. 42.
    Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for efficient system-level test-based model generation. Innovations in Systems and Software Engineering 1(2), 147–156 (2005)CrossRefGoogle Scholar
  43. 43.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  44. 44.
    Nerode, A.: Linear Automaton Transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, University of Dortmund, Germany (2003)Google Scholar
  46. 46.
    Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)CrossRefzbMATHGoogle Scholar
  47. 47.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Proc. FORTE 1999, pp. 225–240. Kluwer Academic, Dordrecht (1999)Google Scholar
  48. 48.
    Raffelt, H., Margaria, T., Steffen, B., Merten, M.: Hybrid test of web applications with webtest. In: TAV-WEB 2008: Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web Services and Applications, pp. 1–7. ACM, New York (2008)Google Scholar
  49. 49.
    Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)CrossRefGoogle Scholar
  50. 50.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407 (2009)CrossRefGoogle Scholar
  51. 51.
    Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  53. 53.
    Shahbaz, M., Li, K., Groz, R.: Learning and Integration of Parameterized Components Through Testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  54. 54.
    Shahbaz, M., Li, K., Groz, R.: Learning Parameterized State Machine Model for Integration Testing. In: Proc. 31st Annual Int. Computer Software and Applications Conf., vol. 2, pp. 755–760. IEEE Computer Society, Washington, DC (2007)Google Scholar
  55. 55.
    Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven development with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 92–108. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  56. 56.
    Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  57. 57.
    Tretmans, J.: Testing Supported by Learning. Formal Methods for Eternal Networked Software Systems. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernhard Steffen
    • 1
  • Falk Howar
    • 1
  • Maik Merten
    • 1
  1. 1.Chair for Programming SystemsTU Dortmund UniversityDortmundGermany

Personalised recommendations