Verifying Linearisability with Potential Linearisation Points

  • John Derrick
  • Gerhard Schellhorn
  • Heike Wehrheim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6664)

Abstract

Linearisability is the key correctness criterion for concurrent implementations of data structures shared by multiple processes. In this paper we present a proof of linearisability of the lazy implementation of a set due to Heller et al. The lazy set presents one of the most challenging issues in verifying linearisability: a linearisation point of an operation set by a process other than the one executing it. For this we develop a proof strategy based on refinement which uses thread local simulation conditions and the technique of potential linearisation points. The former allows us to prove linearisability for arbitrary numbers of processes by looking at only two processes at a time, the latter permits disposing with reasoning about the past. All proofs have been mechanically carried out using the interactive prover KIV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model checking of linearizability of concurrent list implementations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a lazy concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanizing a correctness proof for a lock-free concurrent stack. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 78–95. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)CrossRefGoogle Scholar
  6. 6.
    Derrick, J., Wehrheim, H.: Non-atomic refinement in Z and CSP. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 24–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Theoretical Computer Science 411(51-52), 4379–4398 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Groves, L., Colvin, R.: Trace-based derivation of a scalable lock-free stack algorithm. Formal Aspects of Computing (FAC) 21(1–2), 187–223 (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Heller, S., Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Shavit, N.: A lazy concurrent list-based set algorithm. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 305–309. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: SPAA 2004, pp. 206–215. ACM Press, New York (2004)Google Scholar
  11. 11.
    Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM TOPLAS 12(3), 463–492 (1990)CrossRefGoogle Scholar
  12. 12.
    Web presentation of linearizability theory and the lazy set algorithm (2010),http://www.informatik.uniaugsburg.de/swt/projects/possibilities.html
  13. 13.
    Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)MATHGoogle Scholar
  15. 15.
    Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In: Proc. 15th ACM Symp. on Principles of Distributed Computing, pp. 267–275 (1996)Google Scholar
  16. 16.
    O’Hearn, P.W., Rinetzky, N., Vechev, M.T., Yahav, E., Yorsh, G.: Verifying linearizability with hindsight. In: 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 85–94 (2010)Google Scholar
  17. 17.
    Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive proofs with KIV. In: Automated Deduction—A Basis for Applications, Interactive Theorem Proving, vol. II, ch. 1, pp. 13–39. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  18. 18.
    Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University of Cambridge (2007)Google Scholar
  19. 19.
    Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-concurrent linearisable objects. In: PPoPP 2006, pp. 129–136. ACM, New York (2006)Google Scholar
  21. 21.
    Vafeiadis, V., Parkinson, M.: A marriage of rely/Guarantee and separation logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • John Derrick
    • 1
  • Gerhard Schellhorn
    • 2
  • Heike Wehrheim
    • 3
  1. 1.Department of ComputingUniversity of SheffieldSheffieldUK
  2. 2.Institut für InformatikUniversität AugsburgAugsburgGermany
  3. 3.Institut für InformatikUniversität PaderbornPaderbornGermany

Personalised recommendations