Advertisement

Automated Algorithm Configuration and Parameter Tuning

  • Holger H. Hoos

Abstract

The use of automated configuration and parameter tuning techniques plays an increasingly important role in the design, evaluation and application of high-performance algorithms for difficult computational problems. This chapter provides an introduction to these techniques and gives an overview of three families of procedures for automatically optimising the performance of parameterised algorithms. Racing procedures iteratively evaluate parameter settings on problem instances from a given set and use statistical hypothesis tests to eliminate candidate configurations that are significantly outperformed by other configurations. ParamILS uses a powerful stochastic local search method to search within potentially vast spaces of candidate configurations of a given algorithm. And finally, sequential model-based optimisation (SMBO) methods build a response surface model that relates parameter settings to performance, and use this model to iteratively identify promising settings. We also briefly survey other algorithm configuration and parameter tuning procedures, as well as related approaches, such as instance-based algorithm selection and configuration.

Keywords

Local Search Problem Instance Design Point Automate Algorithm Benchmark Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design and local search. Operations Research 54(1):99–114 (2006) zbMATHCrossRefGoogle Scholar
  2. [2]
    Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming (CP 2009), pp. 142–157 (2009) CrossRefGoogle Scholar
  3. [3]
    Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press (2006) zbMATHGoogle Scholar
  4. [4]
    Audet, C., Orban, D.: Finding optimal algorithmic parameters using the mesh adaptive direct search algorithm. SIAM Journal on Optimization 17(3):642–664 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa, M., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds) 4th International Workshop on Hybrid Metaheuristics, Proceedings, HM 2007, Springer Verlag, Berlin, Germany, Lecture Notes in Computer Science, vol. 4771, pp. 108–122 (2007) Google Scholar
  6. [6]
    Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Estimation-based metaheuristics for the probabilistic traveling salesman problem. Computers & OR 37(11):1939–1951 (2010) zbMATHCrossRefGoogle Scholar
  7. [7]
    Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The New Experimentalism. Natural Computing Series, Springer Verlag, Berlin, Germany (2006) zbMATHGoogle Scholar
  8. [8]
    Bartz-Beielstein, T., Lasarczyk, C., Preuß, M.: Sequential parameter optimization. In: McKay, B., et al. (eds) Proceedings 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh, Scotland, IEEE Press, vol. 1, pp. 773–780 (2005) Google Scholar
  9. [9]
    Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization toolbox, manual version 0.5, September 2008, available at http://www.gm.fh-koeln.de/imperia/md/content/personen/lehrende/bartz_beielstein_thomas/spotdoc.pdf (2008)
  10. [10]
    Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Operations Research/Computer Science Interfaces, Springer Verlag (2008) Google Scholar
  11. [11]
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp,K.: A racing algorithm for configuring metaheuristics. In: GECCO ’02: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18 (2002) Google Scholar
  12. [12]
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and Iterated F-Race: An overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds) Experimental Methods for the Analysis of Optimization Algorithms, Springer, Berlin, Germany, pp. 311–336 (2010) CrossRefGoogle Scholar
  13. [13]
    Bűrmen, Á., Puhan, J., Tuma, T.: Grid restrained Nelder-Mead algorithm. Computational Optimization and Applications 34(3):359–375 (2006) MathSciNetCrossRefGoogle Scholar
  14. [14]
    Carchrae, T., Beck, J.: Applying machine learning to low knowledge control of optimization algorithms. Computational Intelligence 21(4):373–387 (2005) MathSciNetCrossRefGoogle Scholar
  15. [15]
    Chiarandini, M., Fawcett, C., Hoos, H.: A modular multiphase heuristic solver for post enrollment course timetabling (extended abstract). In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling PATAT (2008) Google Scholar
  16. [16]
    Da Costa, L., Fialho, Á., Schoenauer, M., Sebag, M.: Adaptive Operator Selection with Dynamic Multi-Armed Bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation (GECCO’08), pp. 913–920 (2008) CrossRefGoogle Scholar
  17. [17]
    Fawcett, C., Hoos, H., Chiarandini, M.: An automatically configured modular algorithm for post enrollment course timetabling. Tech. Rep. TR-2009-15, University of British Columbia, Department of Computer Science (2009) Google Scholar
  18. [18]
    Fukunaga, A. S.: Automated discovery of composite SAT variable-selection heuristics. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02), pp. 641–648 (2002) Google Scholar
  19. [19]
    Fukunaga, A. S.: Evolving local search heuristics for SAT using genetic programming. In: Genetic and Evolutionary Computation – GECCO-2004, Part II, Springer-Verlag, Seattle, WA, USA, Lecture Notes in Computer Science, vol. 3103, pp. 483–494 (2004) CrossRefGoogle Scholar
  20. [20]
    Gagliolo, M., Schmidhuber, J.: Dynamic algorithm portfolios. In: Amato, C., Bernstein, D., Zilberstein, S. (eds) Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics (AI-MATH-06) (2006) Google Scholar
  21. [21]
    Gomes, C. P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning 24(1-2):67–100 (2000) zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Gratch, J., Chien, S. A.: Adaptive problem-solving for large-scale scheduling problems: A case study. Journal of Artificial Intelligence Research 4:365–396 (1996) Google Scholar
  23. [23]
    Gratch, J., Dejong, G.: Composer: A probabilistic solution to the utility problem in speed-up learning. In: Rosenbloom, P., Szolovits, P. (eds) Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92), AAAI Press / The MIT Press, Menlo Park, CA, USA, pp. 235–240 (1992) Google Scholar
  24. [24]
    Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 475–479 (2004) Google Scholar
  25. [25]
    Hansen, N.: The CMA evolution strategy: A comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds) Towards a new evolutionary computation. Advances on estimation of distribution algorithms, Springer, pp. 75–102 (2006) Google Scholar
  26. [26]
    Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. In: Yao, X., et al. (eds) Parallel Problem Solving from Nature PPSN VIII, Springer, LNCS, vol. 3242, pp. 282–291 (2004) CrossRefGoogle Scholar
  27. [27]
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2):159–195 (2001) CrossRefGoogle Scholar
  28. [28]
    Hoos, H.: Computer-aided design of high-performance algorithms. Tech. Rep. TR-2008-16, University of British Columbia, Department of Computer Science (2008) Google Scholar
  29. [29]
    Hoos, H., Stützle, T.: Local search algorithms for SAT: An empirical evaluation. Journal of Automated Reasoning 24(4):421–481 (2000) zbMATHCrossRefGoogle Scholar
  30. [30]
    Hoos, H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, USA (2004) Google Scholar
  31. [31]
    Huang, D., Allen, T. T., Notz, W. I., Zeng, N.: Global optimization of stochastic black-box systems via sequential kriging meta-models. Journal of Global Optimization 34(3):441–466 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    Hutter, F.: Automated configuration of algorithms for solving hard computational problems. Ph.D. thesis, University of British Columbia, Department of Computer Science, Vancouver, BC, Canada (2009) Google Scholar
  33. [33]
    Hutter, F., Tompkins, D. A., Hoos, H.: Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT. In: Principles and Practice of Constraint Programming – CP 2002, Springer-Verlag, LNCS, vol. 2470, pp. 233–248 (2002) CrossRefGoogle Scholar
  34. [34]
    Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms. In: Principles and Practice of Constraint Programming – CP 2006, Springer-Verlag, LNCS, vol. 4204, pp. 213–228 (2006) CrossRefGoogle Scholar
  35. [35]
    Hutter F., Babić, D., Hoos, H., Hu, A. J.: Boosting verification by automatic tuning of decision procedures. In: Proc. Formal Methods in Computer-Aided Design (FMCAD’07), IEEE Computer Society Press, pp. 27–34 (2007) Google Scholar
  36. [36]
    Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI-07), pp. 1152–1157 (2007) Google Scholar
  37. [37]
    Hutter, F., Hoos, H., Leyton-Brown, K., Murphy, K.: An experimental investigation of model-based parameter optimisation: SPO and beyond. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO’09), ACM, pp. 271–278 (2009) CrossRefGoogle Scholar
  38. [38]
    Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36:267–306 (2009) zbMATHGoogle Scholar
  39. [39]
    Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework (extended version). Tech. Rep. TR-2009-01, University of British Columbia, Department of Computer Science (2009) Google Scholar
  40. [40]
    Hutter, F., Hoos, H., Leyton-Brown K.: Sequential model-based optimization for general algorithm configuration (extended version). Tech. Rep. TR-2010-10, University of British Columbia, Department of Computer Science (2010) Google Scholar
  41. [41]
    Hutter, F., Hoos, H., Leyton-Brown, K., Murphy, K.: Time-bounded sequential parameter optimization. In: Proceedings of the 4th International Conference on Learning and Intelligent Optimization (LION 4), Springer-Verlag, LNCS, vol. 6073, pp. 281–298 (2010) Google Scholar
  42. [42]
    Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Proceedings of the 7th International Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2010), Springer-Verlag, LNCS, vol. 6140, pp. 186–202 (2010) CrossRefGoogle Scholar
  43. [43]
    Hutter, F., Hoos, H., Leyton-Brown, K.: Extending sequential model-based optimization to general algorithm configuration. To appear in: Proceedings of the 5th International Conference on Learning and Intelligent Optimization (LION 5) (2011) Google Scholar
  44. [44]
    Jones, D. R., Schonlau, M., Welch, W. J.: Efficient global optimization of expensive black box functions. Journal of Global Optimization 13:455–492 (1998) zbMATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-09), pp 517–524 (2009) Google Scholar
  46. [46]
    Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A portfolio approach to algorithm selection. In: Rossi, F. (ed) Principles and Practice of Constraint Programming – CP 2003, Springer Verlag, Berlin, Germany, Lecture Notes in Computer Science, vol. 2833, pp. 899–903 (2003) CrossRefGoogle Scholar
  47. [47]
    Lourenço, H. R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds) Handbook of Metaheuristics, Kluwer Academic Publishers, Norwell, MA, USA, pp. 321–353 (2002) Google Scholar
  48. [48]
    Maron, O., Moore, A. W.: Hoeffding races: Accelerating model selection search for classification and function approximation. In: Advances in neural information processing systems 6, Morgan Kaufmann, pp. 59–66 (1994) Google Scholar
  49. [49]
    Nelder, J. A., Mead, R.: A simplex method for function minimization. The Computer Journal 7(4):308–313 (1965) zbMATHGoogle Scholar
  50. [50]
    Nell, C. W., Fawcett, C., Hoos, H., Leyton-Brown K.: HAL: A framework for the automated design and analysis of high-performance algorithms. To appear in: Proceedings of the 5th International Conference on Learning and Intelligent Optimization (LION 5) (2011) Google Scholar
  51. [51]
    Nocedal, J., Wright, S. J.: Numerical Optimization, 2nd edn. Springer-Verlag (2006) zbMATHGoogle Scholar
  52. [52]
    Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence 2(1):1–23 (2008) CrossRefGoogle Scholar
  53. [53]
    Pellegrini, P., Birattari, M.: The relevance of tuning the parameters of metaheuristics. a case study: The vehicle routing problem with stochastic demand. Tech. Rep. TR/IRIDIA/2006-008, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2006) Google Scholar
  54. [54]
    Pop, M., Salzberg, S. L., Shumway, M.: Genome sequence assembly: Algorithms and issues. Computer 35(7):47–54 (2002) CrossRefGoogle Scholar
  55. [55]
    Prasad, M. R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. International Journal on Software Tools for Technology Transfer 7(2):156–173 (2005) CrossRefGoogle Scholar
  56. [56]
    Rasmussen, C. E., Williams, C. K. I.: Gaussian Processes for Machine Learning. The MIT Press (2006) zbMATHGoogle Scholar
  57. [57]
    Rice, J.: The algorithm selection problem. Advances in Computers 15:65–118 (1976) CrossRefGoogle Scholar
  58. [58]
    Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L. M., Knowles, J. D., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., Stützle, T.: A comparison of the performance of different metaheuristics on the timetabling problem. In: Burke, E. K., Causmaecker, P. D. (eds) Practice and Theory of Automated Timetabling IV, 4th International Conference, PATAT 2002, Selected Revised Papers, Springer, Lecture Notes in Computer Science, vol. 2740, pp. 329–354 (2003) Google Scholar
  59. [59]
    Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments (with discussion). Statistical Science 4:409–435 (1989) zbMATHMathSciNetCrossRefGoogle Scholar
  60. [60]
    Santner, T., Williams, B., Notz, W.: The Design and Analysis of Computer Experiments. Springer Verlag, New York (2003) zbMATHGoogle Scholar
  61. [61]
    Schiavinotto, T., Stützle, T.: The linear ordering problem: Instances, search space analysis and algorithms. Journal of Mathematical Modelling and Algorithms 3(4):367–402 (2004) zbMATHMathSciNetCrossRefGoogle Scholar
  62. [62]
    Schonlau, M., Welch, W. J., Jones, D. R.: Global versus local search in constrained optimization of computer models. In: Flournoy, N., Rosenberger, W., Wong, W. (eds) New Developments and Applications in Experimental Design, vol. 34, Institute of Mathematical Statistics, Hayward, California, pp. 11–25 (1998) CrossRefGoogle Scholar
  63. [63]
    Spall, J.: Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc., New York, NY, USA (2003) zbMATHCrossRefGoogle Scholar
  64. [64]
    Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems 16(8):889–914 (2000) CrossRefGoogle Scholar
  65. [65]
    Thachuk, C., Shmygelska, A., Hoos, H.: A replica exchange Monte Carlo algorithm for protein folding in the hp model. BMC Bioinformatics 8(342) (2007) Google Scholar
  66. [66]
    Tompkins, D., Hoos, H.: Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT. In: Proceedings of the 13th International Conference on Theory and Applications of Satisfiability Testing (SAT 2010), Springer-Verlag, LNCS, vol. 6175, pp. 278–292 (2010) CrossRefGoogle Scholar
  67. [67]
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla-07: The design and analysis of an algorithm portfolio for SAT. In: Principles and Practice of Constraint Programming – CP 2007, Springer Berlin / Heidelberg, LNCS, vol. 4741, pp. 712–727 (2007) CrossRefGoogle Scholar
  68. [68]
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32:565–606 (2008) zbMATHGoogle Scholar
  69. [69]
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla2009: An Automatic Algorithm Portfolio for SAT, Solver Description, SAT Competition 2009 (2009) Google Scholar
  70. [70]
    Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-10), pp. 210–216 (2010) Google Scholar
  71. [71]
    Yuan, Z., Fügenschuh, A., Homfeld, H., Balaprakash, P., Stützle T., Schoch M.: Iterated greedy algorithms for a real-world cyclic train scheduling problem. In: Blesa, M., Blum, C., Cotta, C., Fernández, A., Gallardo, J., Roli, A., Sampels, M. (eds) Hybrid Metaheuristics, Lecture Notes in Computer Science, vol. 5296, Springer Berlin / Heidelberg, pp. 102–116 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations