A Novel Linear Cellular Automata-Based Data Clustering Algorithm

  • Javier de Lope
  • Darío Maravall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

In this paper we propose a novel data clustering algorithm based on the idea of considering the individual data items as cells belonging to an uni-dimensional cellular automaton. Our proposed algorithm combines insights from both social segregation models based on Cellular Automata Theory, where the data items themselves are able to move autonomously in lattices, and also from Ants Clustering algorithms, particularly in the idea of distributing at random the data items to be clustered in lattices. We present a series of experiments with both synthetic and real datasets in order to study empirically the convergence and performance results. These experimental results are compared to the obtained by conventional clustering algorithms.

Keywords

Cellular Automata Machine Learning Pattern Recognition Data Mining Data Clustering Social Segregation Models Ants Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckers, R., Holland, O., Deneubourg, J.: From local actions to global tasks: stigmergy and collective robotics. In: Brooks, R., Maes, P. (eds.) Artificial Life IV, pp. 181–189. The MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Chen, L., Xu, X., Chen, Y: An adaptive ant colony clustering algorithm. In: Proc. 3rd Int. Conf. on Machine Learning and Cybernetics, pp. 1387–1392 (2004)Google Scholar
  3. 3.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annual Eugenics, 7, Part II, 179–188 (1936)Google Scholar
  4. 4.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010), http://archive.ics.uci.edu/ml
  5. 5.
    Gallego, J., Hernández, C., Graña, M.: A morphological cellular automata based on morphological independence. Logic Journal of the IGPL (in press)Google Scholar
  6. 6.
    Ganguly, N., Sikdar, B., Deutsch, A., Canright, G., Chaudhuri, P.: A survey on cellular automata. Tech. rep. (2003)Google Scholar
  7. 7.
    Hegselmann, R.: Modeling social dynamics by cellular automata. In: Liebrand, W., Nowak, A., Hegselmann, R. (eds.) Computer Modeling of Social Processes, pp. 37–64. SAGE Publications, London (1998)Google Scholar
  8. 8.
    Ilachinski, A.: Cellular Automata. A discrete universe. World Scientific, Singapore (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Kiran Sree, P., Raju, G., Ramesh Babu, I., Viswanadha Raju, S.: Improving quality of clustering using cellular automata for information retrieval. Journal of Computer Science 4(2), 167–171 (2008)CrossRefGoogle Scholar
  10. 10.
    Neumann, J.V.: Theory of Self-reproducing Autamata. In: Burks, A.W. (ed.), University of Illinois Press, Urbana (1966)Google Scholar
  11. 11.
    Saha, S., Maji, P., Ganguly, N., Roy, S., Chaudhuri, P.P.: Cellular automata based model for pattern clustering. In: Proc. 5th Int. Conf. on Advances in Pattern Recognition, pp. 122–126 (2003)Google Scholar
  12. 12.
    Schelling, T.: Dynamic models of segregation. Journal of Mathematical Sociology 1(2), 143–186 (1971)CrossRefMATHGoogle Scholar
  13. 13.
    Moere, A.V., Clayden, J.J., Dong, A.: Data clustering and visualization using cellular automata ants. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 826–836. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Wolfram, S.: A new kind of science. Wolfram Media, Inc., Champaign (2002)MATHGoogle Scholar
  15. 15.
    Xu, X., Chen, L., He, P.: Ant clustering embeded in cellular automata. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 562–571. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier de Lope
    • 1
    • 2
  • Darío Maravall
    • 1
  1. 1.Cognitive Robotics Group, Dept. of Artificial IntelligenceUniversidad Politécnica de MadridSpain
  2. 2.Dept. Applied Intelligent SystemsUniversidad Politécnica de MadridSpain

Personalised recommendations