Human Action Recognition Based on Tracking Features

  • Javier Hernández
  • Antonio S. Montemayor
  • Juan José Pantrigo
  • Ángel Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

Visual recognition of human actions in image sequences is an active field of research. However, most recent published methods use complex models and heuristics of the human body as well as to classify their actions. Our approach follows a different strategy. It is based on simple feature extraction from descriptors obtained from a visual tracking system. The tracking system is able to bring some useful information like position and size of the subject at every time step of a sequence, and in this paper we show that, the evolution of some of these features is enough to classify an action in most of the cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, L., Suter, D.: Visual learning and recognition of sequential data manifolds with applications to human movement analysis. Computer Vision and Image Understanding 110, 153–172 (2008)CrossRefGoogle Scholar
  2. 2.
    Schindler, K., Gool, L.: Action Snippets: How many frames does human action recognition require? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008) (2008)Google Scholar
  3. 3.
    Ahmad, M., Lee, S.W.: Human action recognition using shape and CLG-motion flow from multi-view image sequences. Pattern Recognition 41, 2237–2252 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Zhou, H., Wang, L., Suter, D.: Human action recognition by feature-reduced Gaussian preocess classification. Pattern Recognition Letters (2009)Google Scholar
  5. 5.
    Lv, F., Nevatia, R.: Single View human Action Recognition using Key pose Matching and Viterbi Path Searching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, June 17-22, pp. 1–8 (2007)Google Scholar
  6. 6.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, August 23-26, vol. 3, pp. 32–36 (2004)Google Scholar
  7. 7.
    Parameswaran, V., Chellappa, R.: View invariants for human action recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 18-20, vol. 2, pp. II- 613–II-619 (2003)Google Scholar
  8. 8.
    Yan, K., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, October 17-21, vol. 1, pp. 166–173 (2005)Google Scholar
  9. 9.
    Ali, S., Basharat, A., Shah, M.: Chaotic Invariants for Human Action Recognition. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, October 14-21, pp. 1–8 (2007)Google Scholar
  10. 10.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, August 23-26, vol. 3, pp. 32–36 (2004)Google Scholar
  11. 11.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. Transactions on Pattern Analysis and Machine Intelligence 29(12), 2247–2253 (2007)CrossRefGoogle Scholar
  12. 12.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar & Signal Processing 140 2, 107–113 (1993)CrossRefGoogle Scholar
  13. 13.
    Moscato, P.: Memetic Algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw Hill, New York (1999)Google Scholar
  14. 14.
    Moscato, P., Cotta, C.: A gentle introduction to Memetic Algorithms. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  15. 15.
    Arulampalam, S.M., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. on Signal Processing, 50(2), 174–178 (2002)CrossRefGoogle Scholar
  16. 16.
    Pantrigo, J.J., Hernández, J., Sánchez, A.: Multiple and variable target visual tracking for video-surveillance applications. Pattern Recogn. Lett. 31(12), 1577–1590 (2010)CrossRefGoogle Scholar
  17. 17.
    Hart, W.E., Krasnogor, N., Smith, J.E.: Recent Advances in Memetic Algorithms. Springer, Heidelberg (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Carpenter, J., Clifford, P., Fearnhead, P.: Building robust simulation based filters for evolving data sets. Tech. Rep., Dept. Statist., Univ. Oxford, Oxford, U.K (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Hernández
    • 1
  • Antonio S. Montemayor
    • 1
  • Juan José Pantrigo
    • 1
  • Ángel Sánchez
    • 1
  1. 1.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations