General Theory of Exobehaviours: A New Proposal to Unify Behaviors

  • Sergio Miguel Tomé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

Nowadays science has not found a way to unify the behavior of biological and autonomous nonbiological systems. While psychology uses the property of intelligence as a basis for explaining cognitive behaviors, artificial intelligence has been unable to explain that property and provide to nonbiological systems with it. In addition, discoveries in the last decade have demonstrated the existence of random and cyclic behaviors in nature that complicate the possibility of unifying the behaviors that are known so far in living organisms. This article presents a new proposal, called general theory of exobehavior, to explain behaviors in a unified way of biological and autonomous non-biological systems, and achieve a foundation for AI as a science.

Keywords

behaviors unification general theory of exobehavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tagkopoulos, I., Liu, Y., Tavazoie, S.: Predictive behavior within microbial genetic networks. Science 320(5881), 1313–1317 (2008)CrossRefGoogle Scholar
  2. 2.
    Mitchell, A., Romano, G.H., Groisman, B., Yona, A., Dekel, E., Kupiec, M., Dahan, O., Pilpel, Y.: Adaptive prediction of environmental changes by microorganisms. Nature 460(5881), 220–224 (2009)CrossRefGoogle Scholar
  3. 3.
    Marijuán, P.C., Navarro, J., del Moral, R.: On prokaryotic intelligence: Strategies for sensing the environment. Biosystems 99(2), 94–103 (2010)CrossRefGoogle Scholar
  4. 4.
    Beaumont, H., Gallie, J., Kost, C., Ferguson, G., Rainey, P.: Experimental evolution of bet hedging. Nature 462, 90–93 (2009)CrossRefGoogle Scholar
  5. 5.
    Kussell, E., Leibler, S.: Phenotypic diversity, population growth, and information in fluctuating environments. Science 309(5473), 2075–2078 (2005)CrossRefGoogle Scholar
  6. 6.
    McClung, C.R.: Plant circadian rhythms. Plant Cell 18(4), 792–803 (2006)CrossRefGoogle Scholar
  7. 7.
    Green, R., Tingay, S., Wang, Z., Tobin, E.: Circadian rhythms confer a higher level of fitness to arabidopsis plants. Plant Physiology 129(2), 576–584 (2002)CrossRefGoogle Scholar
  8. 8.
    Mira, J.M.: Symbols versus connections: 50 years of artificial intelligence. Neurocomputing 71(4-6), 671–680 (2008)CrossRefGoogle Scholar
  9. 9.
    Brooks, R.A.: The relationship between matter and life. Nature, 409–411 (2001)Google Scholar
  10. 10.
    Hawkins, R., Abrams, T., Carew, T., Kandel, E.: A cellular mechanism of classical conditioning in aplysia: activity-dependent amplification of presynaptic facilitation. Science 219(4583), 400–405 (1983)CrossRefGoogle Scholar
  11. 11.
    Schreiber, G.: Knowledge Engineering and Management: The CommonKADS Methodology. The MIT Press, New York (1999)Google Scholar
  12. 12.
    Newton, I.: Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the World. University of California Press, Berkeley (1934)Google Scholar
  13. 13.
    Landauer, R.: Information is physical. Physics Today 44(5), 23–29 (1991)CrossRefGoogle Scholar
  14. 14.
    Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88(23), 237901 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Cambridge (1943)MATHGoogle Scholar
  16. 16.
    Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10(2), 141–160 (2009)CrossRefGoogle Scholar
  17. 17.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)Google Scholar
  18. 18.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2 (1), 14–23 (1986)CrossRefGoogle Scholar
  19. 19.
    Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2006)MATHGoogle Scholar
  20. 20.
    Schmidhuber, J.: Gödel machines: self-referential universal problem solvers making provably optimal self-improvements. Tecnical Report IDSIA-19-03, pp. 256–264 (2003)Google Scholar
  21. 21.
    Trillas, E., Cubillo, S., Castiñeira, E.: On conjectures in orthocomplemented lattices. Artificial Intelligence 117(2), 255–275 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)Google Scholar
  23. 23.
    Doyle, J.: Extending Mechanics to Minds. Cambridge University Press, New York (2006)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergio Miguel Tomé
    • 1
  1. 1.Universidad de SalamancaSpain

Personalised recommendations