Dynamic Model of the dLGN Push-Pull Circuitry

  • Rubén Ferreiroa
  • Eduardo Sánchez
  • Luis Martínez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)

Abstract

In the present work we propose a dynamic model of the lateral geniculate nucleus (dLGN) that allows the implementation of different configurations of the push-pull circuitry in order to study the spatio-temporal filtering being carried out. It is widely accepted that each relay neuron receives only one input from a single retinal ganglion cell, which leads to interpret that the thalamus preserves the retinal structure of the receptive field and thus works as a simple relay station. We believe that this assumption is not fully valid and the thalamus could perform a more relevant processing of information through its complex push-pull circuitry. To test this hypothesis, a computational model was developed with a wiring configuration (convergence/divergence) between the retina and the dLGN based on experimental evidences, and a realistic description of the ON and OFF channels of dLGN. We found that this configuration may help improve the contrast of a stimulus by increasing its synaptic weight on higher frequencies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Madarász, M., Gerle, J., Hajdu, F., Somogyi, G., Tómból, T.: Quantitative histological studies on the lateral geniculate nucleus in the cat. II. Cell numbers and densities in the several layers. J. Hirnforsch 19(2), 159–164 (1978)Google Scholar
  2. 2.
    Ringach, D.L.: Haphazard Wiring of Simple Receptive Fields and Orientation Columns in Visual Cortex. Journal of Neurophysiology 92, 468–476 (2007)CrossRefGoogle Scholar
  3. 3.
    Yeh, C.I., Stoelzel, C.R., Weng, C., Alonso, J.M.: Functional Consequences of Neural Divergence Within the Retinogeniculate Pathway. J. Neurophysiol. 101 (2009)Google Scholar
  4. 4.
    Alonso, J.M., Yeh, C.I., Weng, C., Stoelzel, C.: Retinogeniculate connections: a balancing act between connection specificity and receptive field diversity. Progress in Brain Research 154 (2006)Google Scholar
  5. 5.
    Allen, E.A., Freeman, R.D.: Dynamic Spatial Processing Originates in Early Visual Pathways (2006)Google Scholar
  6. 6.
    Brette, R., Gerstner, W.: Adaptive exponential Integrate-and-Fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)CrossRefGoogle Scholar
  7. 7.
    Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  8. 8.
    McCormick, D.A., Huguenard, J.: A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology 68, 1384–1400 (1992)Google Scholar
  9. 9.
    Huguenard, J.R., McCormick, D.A.: Voltage clamp simulations of currents involved in rhythmic oscillations in thalamic relay neurones. Journal of Neurophysiology 68, 1373–1383 (1992)Google Scholar
  10. 10.
    Palmer, S.E.: Vision Science. MIT, Cambridge (1999)Google Scholar
  11. 11.
    Dayan, P., Abbott, L.F.: Theorical Neuroscience. MIT, Cambridge (2001)MATHGoogle Scholar
  12. 12.
    Rieke, F., Warland, D.: Spikes exploring the neural code. MIT Press, Cambridge (1999)MATHGoogle Scholar
  13. 13.
    Koch, C.: Biophysics of Computation. Oxford University Press, Oxford (1999)Google Scholar
  14. 14.
    Manzón, M.M., Rodríguez, M.M., Otero, L.M.: DEA. How the thalamus chages What the cat′s eye tells the cat′s brain (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rubén Ferreiroa
    • 1
  • Eduardo Sánchez
    • 1
  • Luis Martínez
    • 2
  1. 1.Grupo de Sistemas Intelixentes (GSI), Departamento de Electrónica e ComputaciónUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Visual NeuroscienceInstituto de Neurociencias de AlicanteAlicanteSpain

Personalised recommendations