The Key Elements of Logic Design in Ternary Quantum-Dot Cellular Automata

  • Primoz Pecar
  • Iztok Lebar Bajec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6714)

Abstract

The ternary Quantum-dot Cellular Automata (tQCA) were demonstrated to be a possible candidate for the implementation of a future multi-valued processing platform. Recent papers show that the application of adiabatic pipelining can be used to solve the issues of tQCA logic primitives. The architectures of the resulting tQCAs are similar to their binary counterparts and the physical design rules remain similar to those for the binary QCA domain. The design of complex processing structures is, however, usually based on logic design. The foundation of logic design is a functionally complete set of elementary logic primitives (functions). The currently available tQCA logic primitives, i.e. tQCA majority gate and tQCA inverter gate, do not constitute a functionally complete set. We here present a tQCA implementation of the ternary characteristic functions, which together with the tQCA majority gate and the ternary constants constitute a functionally complete set according to multi-valued Post logic.

Keywords

ternary quantum-dot cellular automaton multi-valued Post logic ternary characteristic functions ternary functionally complete set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, G., Bazan, G., Chen, M., Lent, C., Merz, J., Orlov, A., Porod, W., Snider, G., Tougaw, P.: Practical issues in the realization of quantum-dot cellular automata. Superlattices and Microstructures 20, 447–559 (1996)CrossRefGoogle Scholar
  2. 2.
    Dubrova, E., Jamal, Y., Mathew, J.: Non-silicon non-binary computing: Why not? In: 1st Workshop on Non-Silicon Computation, Boston, Massachusetts, pp. 23–29 (2002)Google Scholar
  3. 3.
    Fitting, M., Orlowska, E. (eds.): Beyond two: Theory and applications of multiple-valued logic. Physica-Verlag, Heidelberg (2003)MATHGoogle Scholar
  4. 4.
    Frieder, G., Luk, C.: Ternary computers: Part 1: Motivation for ternary computers. In: 5th Annual workshop on Microprogramming, Urbana, Illinois, pp. 83–86 (September 1972)Google Scholar
  5. 5.
    Janez, M., Lebar Bajec, I., Pecar, P., Jazbec, A., Zimic, N., Mraz, M.: Automatic design of optimal logic circuits based on ternary quantum-dot cellular automata. WSEAS Trans. Cir. and Sys. 7, 919–928 (2008)Google Scholar
  6. 6.
    Knuth, D.E.: The Art of Computer Programming, 2nd edn., vol. 2. Addison-Wesley, Reading (1981)MATHGoogle Scholar
  7. 7.
    Lebar Bajec, I., Mraz, M.: Towards multi-state based computing using quantum-dot cellular automata. In: Teucher, C., Adamatzky, A. (eds.) Unconventional Computing 2005: From Cellular Automata to Wetware, pp. 105–116. Luniver Press, Beckington (2005)Google Scholar
  8. 8.
    Lebar Bajec, I., Zimic, N., Mraz, M.: The ternary quantum-dot cell and ternary logic. Nanotechnology 17(8), 1937–1942 (2006)CrossRefMATHGoogle Scholar
  9. 9.
    Lebar Bajec, I., Zimic, N., Mraz, M.: Towards the bottom-up concept: extended quantum-dot cellular automata. Microelectronic Engineering 83(4-9), 1826–1829 (2006)CrossRefMATHGoogle Scholar
  10. 10.
    Lent, C., Tougaw, P.: Lines of interacting quantum-dot cells: A binary wire. Journal of Applied Physics 74(10), 6227–6233 (1993)CrossRefGoogle Scholar
  11. 11.
    Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRefGoogle Scholar
  12. 12.
    Lusth, J.C., Dixon, B.: A characterization of important algorithms for quantum-dot cellular automata. Inf. Sci. 113, 193–204 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Niemier, M.T., Kogge, P.M.: Problems in designing with QCAs: Layout = timing. International Journal of Circuit Theory and Applications 29, 49–62 (2001)CrossRefGoogle Scholar
  14. 14.
    Pecar, P., Mraz, M., Zimic, N., Janez, M., Bajec, I.L.: Solving the ternary QCA logic gate problem by means of adiabatic switching. Japanese Journal of Applied Physics 47(6), 5000–5006 (2008)CrossRefGoogle Scholar
  15. 15.
    Pecar, P., Ramsak, A., Zimic, N., Mraz, M., Lebar Bajec, I.: Adiabatic pipelining: A key to ternary computing with quantum dots. Nanotechnology 19(49), 495401 (2008)CrossRefGoogle Scholar
  16. 16.
    Porat, D.I.: Three-valued digital systems. Proceedings of IEE 116(6), 947–954 (1969)Google Scholar
  17. 17.
    Post, E.L.: Introduction to a general theory of elementary propositions. American Journal of Mathematics 43(3), 163–185 (1921)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rine, D.C. (ed.): Computer science and multiple-valued logic: Theory and applications, 2nd edn. North-Holland, Amsterdam (1984)MATHGoogle Scholar
  19. 19.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Journal of Applied Physics 75(3), 1818–1825 (1994)CrossRefGoogle Scholar
  20. 20.
    Tougaw, P., Lent, C.: Dynamic behaviour of quantum cellular automata. Journal of Applied Physics 80(8), 4722–4736 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Primoz Pecar
    • 1
  • Iztok Lebar Bajec
    • 1
  1. 1.Faculty of Computer and Information ScienceUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations