Can Anything from Noether’s Theorem Be Salvaged for Discrete Dynamical Systems?

  • Silvio Capobianco
  • Tommaso Toffoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6714)

Abstract

The dynamics of a physical system is linked to its phase-space geometry by Noether’s theorem, which holds under standard hypotheses including continuity. Does an analogous theorem hold for discrete systems? As a testbed, we take the Ising spin model with both ferromagnetic and antiferromagnetic bonds. We show that—and why—energy not only acts as a generator of the dynamics for this family of systems, but is also conserved when the dynamics is time-invariant.

Keywords

analytical mechanics of cellular automata second-order dynamics energy conservation energy as generator of the dynamics Noether’s theorem in the discrete 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.: Mathematical Methods of Classical Mechanics, 2nd edn., corr. 4th printing. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Bach, T.: Methodology and implementation of a software architecture for cellular and lattice-gas automata programming. PhD thesis, Boston University (2007), http://www.pm1.bu.edu/tt/Bach07thesis.pdf
  3. 3.
    Bennett, C.H., Margolus, N., Toffoli, T.: Bond-energy variables for Ising spin-glass dynamics. Phys. Rev. B 37, 2254 (1988)CrossRefGoogle Scholar
  4. 4.
    Boykett, T., Kari, J., Taati, S.: Conservation Laws in Rectangular CA. J. Cell Autom. 3, 115–122 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Feynman, R., Leighton, R., Sands, M.: Conservation of Energy, ch. 4. The Feynman Lectures on Physics, vol. 1, pp. 4-1–4-8. Addison-Wellesly, Reading (1963)Google Scholar
  6. 6.
    Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Reading (2001)MATHGoogle Scholar
  7. 7.
    Lanczos, C.: The Variational Principles of Mechanics, 4th edn. Dover, New York (1986)MATHGoogle Scholar
  8. 8.
    Noether, E.: Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse 1918, 235–257 (English translation at arxiv.org/abs/physics/0503066v1) Google Scholar
  9. 9.
    Pomeau, Y.: Invariant in cellular automata. J. Phys. A 17, L415–L418 (1984)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Toffoli, T.: Action, or the fungibility of computation. In: Hey, A. (ed.) Feynman and Computation, pp. 349–392. Perseus, Cambridge (1999)Google Scholar
  11. 11.
    Toffoli, T., Capobianco, S., Mentrasti, P.: A new inversion scheme, or how to turn second-order cellular automata into lattice gases. Theor. Comp. Sci. 325, 329–344 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Tyagi, A.: A principle of least computational action. In: Workshop on Physics and Computation, pp. 262–266. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  13. 13.
    Wikipedia. Noether’s theorem (sampled on January 19, 2011), http://www.en.wikipedia.org/wiki/Noethers_theorem

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Silvio Capobianco
    • 1
  • Tommaso Toffoli
    • 2
  1. 1.Inst. of Cybernetics at TUTTallinnEstonia
  2. 2.ECE Dept.Boston Univ.BostonUSA

Personalised recommendations