Advertisement

AdaBoost Face Detection on the GPU Using Haar-Like Features

  • M. Martínez-Zarzuela
  • F. J. Díaz-Pernas
  • M. Antón-Rodríguez
  • F. Perozo-Rondón
  • D. González-Ortega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

Face detection is a time consuming task in computer vision applications. In this article, an approach for AdaBoost face detection using Haar-like features on the GPU is proposed. The GPU adapted version of the algorithm manages to speed-up the detection process when compared with the detection performance of the CPU using a well-known computer vision library. An overall speed-up of × 3.3 is obtained on the GPU for video resolutions of 640x480 px when compared with the CPU implementation. Moreover, since the CPU is idle during face detection, it can be used simultaneously for other computer vision tasks.

Keywords

Face Detection Adaboost Haar-like features GPU CUDA OpenGL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CellCV: Opencv on the cell. adaboost face detection using haar-like features optimization for the cell. code downloading and performance comparisons (2009), http://cell.fixstars.com/opencv/index.php/Facedetect (last Visit February 2009)
  2. 2.
    Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH 1984: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 207–212. ACM Press, New York (1984)Google Scholar
  3. 3.
    Elkan, C.: Boosting and naive bayesian learning. Tech. rep. (1997)Google Scholar
  4. 4.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ghorayeb, H., Steux, B., Laurgeau, C.: Boosted algorithms for visual object detection on graphics processing units. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 254–263. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Transactions on PAMI (1998)Google Scholar
  7. 7.
    Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Annalen. 69, 331–371 (1910)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Harris, M.: Parallel prefix sum (scan) with cuda. In: Nguyen, H. (ed.) GPU Gems 3, ch. 39, pp. 851–876. Addison Wesley Professional, Reading (2007)Google Scholar
  9. 9.
    Hiromoto, M., Nakahara, K., Sugano, H., Nakamura, Y., Miyamoto, R.: A specialized processor suitable for adaboost-based detection with haar-like features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (June 2007)Google Scholar
  10. 10.
    Keren, D., Osadchy, M., Gotsman, C.: Antifaces: A novel, fast method for image detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(7), 747–761 (2001)CrossRefGoogle Scholar
  11. 11.
    OpenCV: Open source computer vision library (2009), http://sourceforge.net/projects/opencvlibrary (last visit February 2009)
  12. 12.
    Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition, pp. 267–296 (1990)Google Scholar
  13. 13.
    Romdhani, S., Torr, P., Scholkopf, B., Blake, A.: Computationally efficient face detection. In: IEEE International Conference on Computer Vision, vol. 2, p. 695 (2001)Google Scholar
  14. 14.
    Shi, Y., Zhao, F., Zhang, Z.: Hardware implementation of adaboost algorithm and verification. In: 22nd International Conference on Advanced Information Networking and Applications - Workshops, AINAW 2008, pp. 343–346 (March 2008)Google Scholar
  15. 15.
    Vaillant, R., Monrocq, C., Le Cun, Y.: Original approach for the localization of objects in images. In: IEEE Proceedings of Vision, Image and Signal Processing, vol. 141(4), pp. 245–250 (August 1994)Google Scholar
  16. 16.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2), 137–154 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Martínez-Zarzuela
    • 1
  • F. J. Díaz-Pernas
    • 1
  • M. Antón-Rodríguez
    • 1
  • F. Perozo-Rondón
    • 1
  • D. González-Ortega
    • 1
  1. 1.Higher School of Telecommunications EngineeringValladolidSpain

Personalised recommendations