FreeSurfer Automatic Brain Segmentation Adaptation to Medial Temporal Lobe Structures: Volumetric Assessment and Diagnosis of Mild Cognitive Impairment

  • R. Insausti
  • M. Rincón
  • E. Díaz-López
  • E. Artacho-Pérula
  • F. Mansilla
  • J. Florensa
  • C. González-Moreno
  • J. Álvarez-Linera
  • S. García
  • H. Peraita
  • E. Pais
  • A. M. Insausti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

Alzheimer’s disease is a prevalent and progressive neurodegenerative disease that often starts clinically as a memory deficit. Specifically, the hippocampal formation (HF) and medial part of the temporal lobe (MTL) are severely affected. Those structures are at the core of the neural system responsible for encoding and retrieval of the memory for facts and events (episodic memory) which is dependent on the HF and MTL. Clinical lesions as well as experimental evidence point that the HF (hippocampus plus entorhinal cortex) and the adjacent cortex in the MTL, are the regions critical for normal episodic memory function. Structural MRI studies can be processed by FreeSurfer to obtain an automatic segmentation of many brain structures. We wanted to explore the advantages of complementing the automatic segmentation of FreeSurfer with a manual segmentation of the HF and MTL to obtain a more accurate evaluation of these memory centers.

We examined a library of cases in which neuroanatomical delimitation of the extent of the HF and MTL was made in 48 control and 16 AD brains, and the knowledge provided was applied to 7 cases (2 controls and 5 MCI patients) in which 3T MRI scans were obtained at two time points, one year and a half apart. Our results show that volumetric values were preserved in controls as well as non amnestic MCI patients, while the amnestic type (the more often to develop full AD) showed a volume decrease in the HF and MTL structures. The methodology still needs further development to a full automatization, but it seems to be promising enough for early detection of volume changes in patients at risk of developing AD.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, S.E., Hyman, B.T., Flory, J., Damasio, A.R., Van Hoesen, G.W.: The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb. Cortex 1, 103–116 (1991)CrossRefGoogle Scholar
  2. 2.
    Blaizot, X., Mansilla, F., Insausti, A.M., Constans, J.M., Salinas-Alamán, A., Pró-Sistiaga, P., Mohedano-Moriano, A., Insausti, R.: The human parahippocampal region: I. Temporal pole cytoarchitectonic and MRI correlation. Cer. Cortex 20, 2198–2212 (2010)CrossRefGoogle Scholar
  3. 3.
    Braak, H., Braak, E.: Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–278 (1995)CrossRefGoogle Scholar
  4. 4.
    Hyman, B.T., Van Hoesen, G.W., Damasio, A.R., Barnes, C.L.: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168–1170 (1984)CrossRefGoogle Scholar
  5. 5.
    Insausti, R., Juottonen, K., Soininen, H., Insausti, A.M., Partanen, K., Vainio, P., Laakso, M.P., Pitkanen, A.: MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Amer J. Neuroradiol. 19, 656–671 (1998)Google Scholar
  6. 6.
    Insausti, R., Insausti, A.M., Mansilla, F., Abizanda, P., Artacho-Pérula, E., Arroyo-Jimenez, M.M., Martinez-Marcos, A., Marcos, P., Muñoz-Lopez, M.: The human parahippocampal gyrus. Anatomical and MRI correlates. In: 33th Annual Meeting of Society for Neuroscience New Orleans, USA (November 2003)Google Scholar
  7. 7.
    Insausti, R., Amaral, D.G.: The Human Hippocampal Formation. In: Paxinos, G., Mai, J. (eds.) The Human Nervous System, 2nd edn., pp. 871–912. Academic Press, San Diego (2004)CrossRefGoogle Scholar
  8. 8.
    Insausti, R., Amaral, D.G.: Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J. Comp. Neurol. 20, 608–641 (2008)CrossRefGoogle Scholar
  9. 9.
    Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C., Trojanowski, J.Q.: Hypothetical model of dynamic biomarkers of the Alzheimer’s. pathological cascade. Lancet Neurol. 9, 119–128 (2010)CrossRefGoogle Scholar
  10. 10.
    Jack, C.R., Lowe, V.J., Senjem, M.L., Weigand, S.D., Kemp, B.J., Shiung, M.M., Knopman, D.S., Boeve, B.F., Klunk, W.E., Mathis, C.A., Petersen, R.C.: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131, 665–680 (2007)CrossRefGoogle Scholar
  11. 11.
    Juottonen, K., Laakso, M.P., Insausti, R., Lehtovirta, M., Pitkänen, A., Partanen, K., Soininen, H.: Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol. Aging 19, 15–22 (1998)CrossRefGoogle Scholar
  12. 12.
    Malykhina, N.V., Bouchard, T.P., Ogilvie, C.J., Coupland, N.J., Seres, P., Camicioli, R.: Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiat. Res. Neuroimaging 155, 155–165 (2007)CrossRefGoogle Scholar
  13. 13.
    Peraita, H., Hernández-Tamames, J.A., Dobato, J.L., Díaz, C., Seco de Herrera, A.G., García, S., Linera, J.A.: Neuropsychological and imaging (MR) biomarkers in the early detection of Mild Cognitive Impairment (MCI). Póster. In: 3nd World congress on Controversies in Neurology (CONy), Pragu, October 8-11 (2009)Google Scholar
  14. 14.
    Sánchez-Benavides, G., Gómez-Ansón, B., Sainz, A., Vives, Y., Delfino, M., Peña-Casanova, J.: Manual validatiion of FreeSurfer’s automated hippocampal segmetation in normal aging, mild cognitive impairment and Alzheimer disease subjects. Psychiatry Dis. Neuroimaging 181, 219–225 (2010)CrossRefGoogle Scholar
  15. 15.
    Squire, L.R., Stark, C.E.L., Clark, R.E.: The Medial Temporal Lobe. Annu. Rev. Neurosci. 27, 279–306 (2004)CrossRefGoogle Scholar
  16. 16.
    Stoub, T.R., de Toledo-Morrell, L., Stebbins, G.T., Leurgans, S., Bennett, D.A., Shah, R.C.: Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A 103, 10041–10045 (2006)CrossRefGoogle Scholar
  17. 17.
    Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack, C.R.: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130, 1777–1786 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Insausti
    • 1
  • M. Rincón
    • 2
  • E. Díaz-López
    • 2
  • E. Artacho-Pérula
    • 1
  • F. Mansilla
    • 1
  • J. Florensa
    • 1
  • C. González-Moreno
    • 3
  • J. Álvarez-Linera
    • 4
  • S. García
    • 5
  • H. Peraita
    • 5
  • E. Pais
    • 6
  • A. M. Insausti
    • 6
  1. 1.Human Neuroanatomy Laboratory, School of MedicineUniversity of Castilla-La ManchaAlbaceteSpain
  2. 2.Dept. Inteligencia Artificial. E.T.S.I. InformáticaUniversidad Nacional de Educación a DistanciaMadridSpain
  3. 3.DEIMOS Space S.L.U.Tres Cantos, MadridSpain
  4. 4.Fundación CIEN y Fundación Reina Sofía, Comunidad Autónoma de MadridUnidad de investigación del Proyecto AlzheimerSpain
  5. 5.Facultad de PsicologíaUniversidad Nacional de Educación a DistanciaMadridSpain
  6. 6.Departamento de Ciencias de la SaludUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations