Exploration of LICA Detections in Resting State fMRI

  • Darya Chyzhyk
  • Ann K. Shinn
  • Manuel Graña
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

Lattice Independent Component Analysis (LICA) approach consists of a detection of lattice independent vectors (endmembers) that are used as a basis for a linear decomposition of the data (unmixing). In this paper we explore the network detections obtained with LICA in resting state fMRI data from healthy controls and schizophrenic patients. We compare with the findings of a standard Independent Component Analysis (ICA) algorithm. We do not find agreement between LICA and ICA. When comparing findings on a control versus a schizophrenic patient, the results from LICA show greater negative correlations than ICA, pointing to a greater potential for discrimination and construction of specific classifiers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Chyzyk, D., Termenon, M., Savio, A.: A Comparison of VBM Results by SPM, ICA and LICA. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 429–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Cordes, D., Haughton, V., Carew, J.D., Arfanakis, K., Maravilla, K.: Hierarchical clustering to measure connectivity in fmri resting-state data. Magnetic Resonance Imaging 20(4), 305–317 (2002)CrossRefGoogle Scholar
  4. 4.
    Craddock, R.C., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S.: Disease state prediction from resting state functional connectivity. Magnetic Resonance in Medicine 62, 1619–1628 (2009)CrossRefGoogle Scholar
  5. 5.
    Demirci, O., Stevens, M.C., Andreasen, N.C., Michael, A., Liu, J., White, T., Pearlson, G.D., Clark, V.P., Calhoun, V.D.: Investigation of relationships between fMRI brain networks in the spectral domain using ICA and granger causality reveals distinct differences between schizophrenia patients and healthy controls. NeuroImage 46(2), 419–431 (2009)CrossRefGoogle Scholar
  6. 6.
    Graña, M.: A brief review of lattice computing. In: Proc. WCCI, pp. 1777–1781 (2008)Google Scholar
  7. 7.
    Graña, M., Chyzyk, D., García-Sebastián, M., Hernández, C.: Lattice independent component analysis for functional magnetic resonance imaging. Information Sciences (2010) (in press)Google Scholar
  8. 8.
    Graña, M., Savio, A.M., Garcia-Sebastian, M., Fernandez, E.: A lattice computing approach for on-line fmri analysis. Image and Vision Computing (2009) (in press)Google Scholar
  9. 9.
    Schmalz, M.S., Ritter, G.X., Urcid, G.: Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10-12), 2101–2110 (2009)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., Wang, L., Jiang, T.: Regional homogeneity, functional connectivity and imaging markers of alzheimer’s disease: A review of resting-state fmri studies. Neuropsychologia 46(6), 1648–1656 (2008); Neuroimaging of Early Alzheimer’s DiseaseCrossRefGoogle Scholar
  11. 11.
    Maldonado, J.O., Hernandez, C., Graña, M., Villaverde, I.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)CrossRefGoogle Scholar
  12. 12.
    Mingoia, G., Wagner, G., Langbein, K., Scherpiet, S., Schloesser, R., Gaser, C., Sauer, H., Nenadic, I.: Altered default-mode network activity in schizophrenia: A resting state fmri study. Schizophrenia Research 117(2-3), 355–356 (2010); 2nd Biennial Schizophrenia International Research ConferenceCrossRefGoogle Scholar
  13. 13.
    Northoff, G., Duncan, N.W., Hayes, D.J.: The brain and its resting state activity–experimental and methodological implications. Progress in Neurobiology 92(4), 593–600 (2010)CrossRefGoogle Scholar
  14. 14.
    Dosenbach, N.U.F., et al.: Prediction of individual brain maturity using fmri. Science 329, 1358–1361 (2010)CrossRefGoogle Scholar
  15. 15.
    Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45(supplement 1), S199–S209 (2009); Mathematics in Brain ImagingCrossRefGoogle Scholar
  16. 16.
    Remes, J.J., Starck, T., Nikkinen, J., Ollila, E., Beckmann, C.F., Tervonen, O., Kiviniemi, V., Silven, O.: Effects of repeatability measures on results of fmri sica: A study on simulated and real resting-state effects. NeuroImage (2010) (in Press) Corrected proofGoogle Scholar
  17. 17.
    van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: A review on resting-state fmri functional connectivity. European Neuropsychopharmacology 20(8), 519–534 (2010)CrossRefGoogle Scholar
  18. 18.
    Calhoun, T.V.D., Adali, T.: Unmixing fmri with independent component analysis. IEEE Engineering in Medicine and Biology Magazine 25(2), 79–90 (2006)CrossRefGoogle Scholar
  19. 19.
    Vercammen, A., Knegtering, H., den Boer, J.A., Liemburg, E.J., Aleman, A.: Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biological Psychiatry 67(10), 912–918 (2010); Anhedonia in SchizophreniaCrossRefGoogle Scholar
  20. 20.
    Yao, Z., Wang, L., Lu, Q., Liu, H., Teng, G.: Regional homogeneity in depression and its relationship with separate depressive symptom clusters: A resting-state fmri study. Journal of Affective Disorders 115(3), 430–438 (2009)CrossRefGoogle Scholar
  21. 21.
    Zhou, Y., Liang, M., Jiang, T., Tian, L., Liu, Y., Liu, Z., Liu, H., Kuang, F.: Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fmri. Neuroscience Letters 417(3), 297–302 (2007)CrossRefGoogle Scholar
  22. 22.
    Zhou, Y., Shu, N., Liu, Y., Song, M., Hao, Y., Liu, H., Yu, C., Liu, Z., Jiang, T.: Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophrenia Research 100(1-3), 120–132 (2008)CrossRefGoogle Scholar
  23. 23.
    Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., Wang, Y.-F., Zang, Y.-F.: An improved approach to detection of amplitude of low-frequency fluctuation (alff) for resting-state fmri: Fractional alff. Journal of Neuroscience Methods 172(1), 137–141 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Darya Chyzhyk
    • 1
  • Ann K. Shinn
    • 2
  • Manuel Graña
    • 1
  1. 1.Computational Intelligence Group Dept. CCIA, UPV/EHUSan SebastianSpain
  2. 2.McLean Hospital, Belmont, Massachusetts; Harvard Medical SchoolBostonUS

Personalised recommendations