A Quantitative Study on Acupuncture Effects for Fighting Migraine Using SPECT Images

  • M. López
  • J. Ramírez
  • J. M. Górriz
  • R. Chaves
  • M. Gómez-Río
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

The aim of this paper is to quantitatively determine whether acupuncture, applied under real conditions of clinical practice in the area of primary healthcare, is effective for fighting migraine. This is done by evaluating SPECT images of migraine patients’ brain in a context of image classification. Two different groups of patients are randomly collected and received verum and sham acupuncture, respectively. In order to make the image processing computationally efficient and solve the small sample size problem, an initial feature extraction step based on Principal Component Analysis is performed on the images. Differences among features extracted from pre– and post–acupuncture scans are quantified by means of Support Vector Machines for verum and sham modalities, and statistically reinforced by carrying out a statistical t–test. The conclusions of this work point at acupuncture as an effective method to fight migraine.

Keywords

SPECT acupuncture migraine PCA SVM class separability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alavi, A., Lariccia, P., Sadek, A., Newberg, A., Lee, L., Reich, H., Lattanand, C., Mozley, P.: Neuroimaging of acupuncture in patients with chronic pain. The Journal of Alternative and Complementary Medicine 3(1), S41–S53 (1997)CrossRefGoogle Scholar
  2. 2.
    Cho, Z., Chung, S., Jones, J., Park, J., Park, H., Lee, H., Wong, E., Min, B.: New findings of the correlation between acupoints and corresponding brain cortices using functional mri. Proceedings of the National Academy of Sciences 95, 2670–2673 (1998)CrossRefGoogle Scholar
  3. 3.
    Lewitha, G.T., White, P., Pariente, J.: Investigating acupuncture using brain imaging techniques: The current state of play. Advance Access Publication (2005)Google Scholar
  4. 4.
    Battistella, P.A., Ruffilli, R., Pozza, F.D., Pitassi, I., Casara, G., Boniver, C., Bendagli, A., Condini, A.: 99mTc HM-PAO SPECT in pediatric migraine. Headache: The Journal of Head and Face Pain 30(10), 646–649 (1990)CrossRefGoogle Scholar
  5. 5.
    Vas, J., Modesto, M., Méndez, C., Perea-Milla, E., Aguilar, I., Carrasco-Lozano, J., Faus, V., Martos, F.: Effectiveness of acupuncture, special dressings and simple, low-adherence dressings for healing venous leg ulcers in primary healthcare: study protocol for a cluster-randomized open-labeled trial. BMC Complementary and Alternative Medicine 8(29) (2008)Google Scholar
  6. 6.
    Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)CrossRefGoogle Scholar
  7. 7.
    López, M., Ramírez, J., Górriz, J.M., Salas-Gonzalez, D., Álvarez, I., Segovia, F., Puntonet, C.G.: Automatic tool for the Alzheimer’s disease diagnosis using PCA and Bayesian classification rules. IET Electronics Letters 45(8), 389–391 (2009)CrossRefGoogle Scholar
  8. 8.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Congnitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  9. 9.
    Burges, C.J.C.: A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  10. 10.
    Ramírez, J., Górriz, J., Romero, A., Lassl, A., Salas-Gonzalez, D., López, M., Río, M.G.: Computer aided diagnosis of Alzheimer type dementia combining support vector machines and discriminant set of features. Information Sciences (2009) (accepted)Google Scholar
  11. 11.
    López, M., Ramírez, J., Górriz, J., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R., Padilla, P., Gómez-Río, M.: The Alzheimer’s Disease Neuroimaging Initiative: Principal component analysis-based techniques and supervised classification schemes for the early detection of alzheimer’s disease. Neurocomputing (2010) (accepted) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. López
    • 1
  • J. Ramírez
    • 1
  • J. M. Górriz
    • 1
  • R. Chaves
    • 1
  • M. Gómez-Río
    • 2
  1. 1.Dept. of Signal Theory, Networking and CommunicationsUniversity of GranadaSpain
  2. 2.Department of Nuclear Medicine HospitalUniversitario Virgen de las NievesGranadaSpain

Personalised recommendations