Symbiosis Enables the Evolution of Rare Complexes in Structured Environments

  • Rob Mills
  • Richard A. Watson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5778)

Abstract

We present a model that considers evolvable symbiotic associations between species, such that one species can have an influence over the likelihood of other species being present in its environment. We show that this process of ‘symbiotic evolution’ leads to rare and adaptively significant complexes that are unavailable via non-associative evolution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, J.N.: The Coevolutionary Process. Chicago (1994)Google Scholar
  2. 2.
    Mayr, E.: What Evolution is. Phoenix, London (2001)Google Scholar
  3. 3.
    Dunbar, H.E., Wilson, A.C.C., Ferguson, N.R., Moran, N.A.: Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology 5(5), e96 (2007)CrossRefGoogle Scholar
  4. 4.
    Margulis, L.: The Symbiotic Planet. Phoenix, London (1998)Google Scholar
  5. 5.
    Khakhina, L.N.: Concepts of Symbiogenesis. Yale University Press, New Haven (1992)Google Scholar
  6. 6.
    Maynard Smith, J., Szathmáry, E.: The major transitions in evolution. Oxford University Press, Oxford (1995)Google Scholar
  7. 7.
    Margulis, L., Dolan, M.F., Guerrero, R.: Origin of the nucleus from the karyomastigontin amitochondriate protists. PNAS 97(13), 6954–6959 (2000)CrossRefGoogle Scholar
  8. 8.
    Watson, R.A., Palmius, N., Mills, R., Powers, S., Penn, A.: Can selfish symbioses effect higher-level selection? In: ECAL (2009)Google Scholar
  9. 9.
    Mills, R., Watson, R.A.: Variable discrimination of crossover versus mutation using parameterized modular structure. In: GECCO, pp. 1312–1319 (2007)Google Scholar
  10. 10.
    Watson, R.A., Pollack, J.B.: A computational model of symbiotic composition in evolutionary transitions. Biosystems 69(2-3), 187–209 (2003)CrossRefGoogle Scholar
  11. 11.
    Defaweux, A., Lenaerts, T., van Hemert, J.I.: Evolutionary transitions as a metaphor for evolutionary optimisation. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 342–352. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Mills, R., Watson, R.A.: Symbiosis, synergy and modularity: Introducing the reciprocal synergy symbiosis algorithm. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1192–1201. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    de Jong, E.D., Watson, R.A., Thierens, D.: On the complexity of hierarchical problem solving. In: GECCO, pp. 1201–1208 (2005)Google Scholar
  14. 14.
    Philemotte, C., Bersini, H.: A gestalt genetic algorithm: less details for better search. In: Procs. GECCO, pp. 1328–1334 (2007)Google Scholar
  15. 15.
    Houdayer, J., Martin, O.C.: Renormalization for discrete optimization. Physical Review Letters 83, 1030–1033 (1999)CrossRefGoogle Scholar
  16. 16.
    Iclanzan, D., Dumitrescu, D.: Overcoming hierarchical difficulty by hill-climbing the building block structure. In: GECCO, pp. 1256–1263 (2007)Google Scholar
  17. 17.
    Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms. IEEE Transactions on Evolutionary Computation 9(5), 474–488 (2005)CrossRefGoogle Scholar
  18. 18.
    Watson, R.A., Jansen, T.: A building-block royal road where crossover is provably essential. In: GECCO, pp. 1452–1459 (2007)Google Scholar
  19. 19.
    Mills, R., Watson, R.A.: Adaptive units of selection can evolve complexes that are provably unevolvable under fixed units of selection (abstract). In: ALIFE XI, p. 785 (2008)Google Scholar
  20. 20.
    Mills, R., Watson, R.A.: Dynamic problem decomposition via evolved symbiotic associations (in preparation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rob Mills
    • 1
  • Richard A. Watson
    • 1
  1. 1.Natural Systems Research GroupUniversity of SouthamptonUK

Personalised recommendations