Advertisement

Self-reconfigurable Modular Robots and Their Symbolic Configuration Space

  • Souheib Baarir
  • Lom-Messan Hillah
  • Fabrice Kordon
  • Etienne Renault
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6662)

Abstract

Modular and self-reconfigurable robots are a powerful way to design versatile systems that can adapt themselves to different physical environment conditions. Self-reconfiguration is not an easy task since there are numerous possibilities of module organization. Moreover, some module organizations are equivalent one to another.

In this paper, we apply symbolic representation techniques from model checking to provide an optimized representation of all configurations for a modular robot. The proposed approach captures symmetries of the system and avoids storing all the equivalences generated by permuting modules, for a given configuration. From this representation, we can generate a compact symbolic configuration space and use it to efficiently compute the moves required for self-reconfiguration (i.e. going from one configuration to another). A prototype implementation is used to provide some benchmarks showing promising results.

Keywords

Modular robotics Self-reconfiguration Symbolic configuration space Symmetries CKBot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arney, D., Fischmeister, S., Lee, I., Takashima, Y., Yim, M.: Model-based Programming of Modular Robots. In: 13th IEEE International Symposium on Object-Oriented Real-time Distributed Computing (ISORC 2010), pp. 87–91. IEEE Computer Society, Carmona (2010)Google Scholar
  2. 2.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic Well-Formed Coloured Nets for Symmetric Modelling Applications. IEEE Transactions on Computers 42(11), 1343–1360 (1993)CrossRefGoogle Scholar
  3. 3.
    Christensen, D.J.: Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2539–2545 (2006)Google Scholar
  4. 4.
    Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry Reductions in Model Checking. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  6. 6.
    Girault, C., Valk, R. (eds.): Petri Nets and System Engineering, ch. 2, pp. 9–23. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    GreatSPN. Petri nets suite, http://www.di.unito.it/~greatspn
  8. 8.
    Park, M.G.: Configuration recognition, Communication Fault Tolerance and Self-reassembly for the CKBot. PhD thesis, University of Pennsylvannia (2009)Google Scholar
  9. 9.
    Shen, W.-M.: Self-reconfigurable robots for adaptive and multifunctional tasks. Technical report, University of Florida, Florida, USA (December 2008)Google Scholar
  10. 10.
    The CKBot home page, http://modlabupenn.org/ckbot/
  11. 11.
    Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Yim, M., White, P., Park, M., Sastra, J.: Modular Self-Reconfigurable Robots. In: Encyclopedia of Complexity and System Science. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Transactions on mechatronics, special issue on Information Technology in Mechatronics (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Souheib Baarir
    • 1
  • Lom-Messan Hillah
    • 1
  • Fabrice Kordon
    • 2
  • Etienne Renault
    • 2
  1. 1.LIP6, CNRS UMR 7606 and Université Paris Ouest Nanterre La DéfenseNanterre CEDEXFrance
  2. 2.LIP6, CNRS UMR 7606Université P. & M. Curie - Paris 6Paris CEDEX 05France

Personalised recommendations