Efficient Generation of Networks with Given Expected Degrees

  • Joel C. Miller
  • Aric Hagberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6732)


We present an efficient algorithm to generate random graphs with a given sequence of expected degrees. Existing algorithms run in \(\mathcal{O}(N^2)\) time where N is the number of nodes. We prove that our algorithm runs in \(\mathcal{O}(N+M)\) expected time where M is the expected number of edges. If the expected degrees are chosen from a distribution with finite mean, this is \(\mathcal{O}(N)\) as N → ∞.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batagelj, V., Brandes, U.: Efficient generation of large random networks. Physical Review E 71, 036113 (2005)CrossRefGoogle Scholar
  2. 2.
    Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Structures and Algorithms 31(1), 3 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. Journal of Statistical Physics 124(6), 1377–1397 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web. In: WWW9: 9th International World Wide Web Conference, vol. 33, pp. 309–320 (2000)Google Scholar
  5. 5.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6(2), 125–145 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Internet Mathematics 1(1), 91–113 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chung, F., Lu, L.: The volume of the giant component of a random graph with given expected degrees. SIAM Journal on Discrete Mathematics 20(2), 395–411 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chung, F., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees. Internet Mathematics 1(3), 257–275 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Draief, M., Ganesh, A.: A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents. Discrete Event Dynamic Systems 21, 41–61 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eubank, S., Kumar, V.S., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 718–727 (2004)Google Scholar
  11. 11.
    del Genio, C.I., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PloS ONE 5(4), e10012 (2010)Google Scholar
  12. 12.
    van der Hofstad, R.: Critical behavior in inhomogeneous random graphs, arXiv:0902.0216v2 [math.PR] (2010)Google Scholar
  13. 13.
    Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. Journal of The Royal Society Interface 2(4), 295–307 (2005), doi:10.1098/rsif.2005.0051CrossRefGoogle Scholar
  14. 14.
    Kleinberg, J.: Complex networks and decentralized search algorithms. In: Proceedings of the International Congress of Mathematicians, ICM (2006)Google Scholar
  15. 15.
    Newman, M.E.J.: Spread of epidemic disease on networks. Physical Review E 66(1), 016128 (2002)Google Scholar
  16. 16.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Advances in Applied Probability 38(1), 59–75 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joel C. Miller
    • 1
    • 2
  • Aric Hagberg
    • 3
  1. 1.Center for Communicable Disease DynamicsHarvard School of Public HealthBostonUSA
  2. 2.Fogarty International CenterNational Institute of HealthBethesdaUSA
  3. 3.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations