Advertisement

Artificial Cells for Information Processing: Iris Classification

  • Enrique Fernandez-Blanco
  • Julian Dorado
  • Jose A. Serantes
  • Daniel Rivero
  • Juan R. Rabuñal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5777)

Abstract

This paper presents a model in the Artificial Embryogene (AE) framework. The presented system tries to model the main functions of the biological cell model. The main part of this paper describes the Gene Regulatory Network (GRN) model, which has a similar processing information capacity as Boole’s Algebra. This paper also describes how to use it to perform the Iris Classification problem which is a pattern classification problem. The aim of this work is to show that the model can solve this kind of problems.

Keywords

Artificial Embryogeny Genetic Algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stanley, K., Miikkulainen, R.: A Taxonomy for Artificial Embryogeny. In: Proceedings of Artificial Life 9, pp. 93–130. MIT Press, Cambridge (2003)Google Scholar
  2. 2.
    Lindenmayer, A.: Mathematical models for cellular interaction in development: Part I and II. Journal of Theorical Biology 18, 280-299, 300–315 (1968)CrossRefGoogle Scholar
  3. 3.
    Turing, A.: The chemical basis of morphogenesis. Philosofical Transactions of the Royal Society B 237, 37–72 (1952)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kitano, H.: Designing neural networks using genetic algorithm with dynamic graph generation system. Complex Systems 4, 461–476 (1990)zbMATHGoogle Scholar
  5. 5.
    Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain generation. Artificial Life 8(3) (2002)Google Scholar
  6. 6.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)CrossRefGoogle Scholar
  7. 7.
    Steiner, T., Jin, Y., Sendhoff, B.: A Cellular Model for the Evolutionary development of Lightweight Material with an Inner Structure. In: Proceedings of Genetic and Evolutionary Computation Conferences 2008, Atlanta, pp. 851–858 (2008)Google Scholar
  8. 8.
    Kumar, S.: Investigating Computational Models of Development for the Construction of Shape and Form. PhD Thesis. Department of Computer Science, University College London (2004)Google Scholar
  9. 9.
    Fernandez-Blanco, E., Dorado, J., Rabuñal, J.R., Pedreira, N., Gestal, M.: A Computational Approach to Simple Structure Development. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 825–834. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  11. 11.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html Google Scholar
  12. 12.
    Kephart, J.O., Chess, D.M.: The vision of Autonomic Computing. IEEE Computer Society Press, Los Alamitos (2003), 0018-9162. 41-50Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Enrique Fernandez-Blanco
    • 1
  • Julian Dorado
    • 1
  • Jose A. Serantes
    • 1
  • Daniel Rivero
    • 1
  • Juan R. Rabuñal
    • 1
  1. 1.University of A CoruñaA CoruñaSpain

Personalised recommendations