Advertisement

Agent-Based Model of Dengue Disease Transmission by Aedes aegypti Populations

  • Carlos Isidoro
  • Nuno Fachada
  • Fábio Barata
  • Agostinho Rosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5777)

Abstract

This paper presents an agent based model of the Aedes aegypti mosquito showing not only population dynamics but also the Dengue disease propagation in both the vector and host populations (mosquitoes and humans, respectively); this study will focus on the latter aspect. The agents model the main aspects of the mosquito’s ecology and behavior, while the environmental components are implemented as a layer of dynamic elements obeying to physical laws. Model verification was performed through examination of simulation parameters variation and qualitative assessment with existing models and simulations. The agent based modeling and simulation platform used was the LAIS simulator.

Keywords

Artificial Life Agent Based Modelling Aedes aegypti Dengue RIDL SIT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Senior, K.: Climate change and infectious disease: a dangerous liaison. The Lancet Infectious Diseases 8(2), 92–93 (2008)CrossRefGoogle Scholar
  2. 2.
    Isidoro, C., Fachada, N., Barata, F., Rosa, A.: Agent-based model of aedes aegypti population dynamics. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 53–64. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environments in multi-agent simulation. Autonomous Agents and Multi-Agent Systems 14(1), 87–116 (2007)CrossRefGoogle Scholar
  4. 4.
    Ross, R.: The Prevention of Malaria (1911)Google Scholar
  5. 5.
    Macdonald, G.: The analysis of equilibrium in malaria. Trop. Dis. Bull. 49(9), 813–829 (1952)Google Scholar
  6. 6.
    Macdonald, G.: The epidemiology and control of malaria (1957)Google Scholar
  7. 7.
    Eisenberg, J., Reisen, W., Spear, R.: Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: model development. Journal of Medical Entomology 32(2), 83–97 (1995)CrossRefGoogle Scholar
  8. 8.
    Eisenberg, J., Reisen, W., Spear, R.: Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: sensitivity analysis. Journal of Medical Entomology 32(2), 98–106 (1995)CrossRefGoogle Scholar
  9. 9.
    Alto, B., Juliano, S.: Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of Medical Entomology 38(5), 646–656 (2001)CrossRefGoogle Scholar
  10. 10.
    Ahumada, J., Lapointe, D., Samuel, M.: Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. Journal of Medical Entomology 41(6), 1157–1170 (2004)CrossRefGoogle Scholar
  11. 11.
    Focks, D., Haile, D., Daniels, E., Mount, G.: Dynamic life table model of a container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 1. Analysis of the literature and model development. Journal of Medical Entomology 30, 1003–1017 (1993)CrossRefGoogle Scholar
  12. 12.
    Focks, D., Haile, D., Daniels, E., Mount, G.: Dynamic life table model of a container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 2. Simulation results and validation. Journal of Medical Entomology 30, 1018–1028 (1993)CrossRefGoogle Scholar
  13. 13.
    Deng, C., Tao, H., Ye, Z.: Agent-based modeling to simulate the dengue spread 7143, 714310 (2008)Google Scholar
  14. 14.
    Thomas, D., Donnelly, C., Wood, R., Alphey, L.: Insect population control using a dominant, repressible, lethal genetic system. Science 287 (5462), 2474–2476Google Scholar
  15. 15.
    Atkinson, M., Su, Z., Alphey, N., Alphey, L., Coleman, P., Wein, L.: Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proceedings of the National Academy of Sciences 104(22), 9540–9546 (2007)CrossRefGoogle Scholar
  16. 16.
    Esteva, L., Mo Yang, H.: Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical Biosciences 198(2), 132–147 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Li, J.: Simple mathematical models for interacting wild and transgenic mosquito populations. Mathematical Biosciences 189(1), 39–59 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Maiti, A., Patra, B., Samanta, G.: Sterile insect release method as a control measure of insect pests: A mathematical model. Journal of Applied Mathematics and Computing 22(3), 71–86 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Fachada, N.: Agent-based Simulation of the Immune System. Master’s thesis, Instituto Superior Técnico, Lisboa (July 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carlos Isidoro
    • 1
  • Nuno Fachada
    • 1
  • Fábio Barata
    • 1
  • Agostinho Rosa
    • 1
  1. 1.Evolutionary System and Biomedical Engineering Lab, Systems and Robotics Institute, Instituto Superior TécnicoLisboaPortugal

Personalised recommendations