Skip to main content

Towards an Autonomous Evolution of Non-biological Physical Organisms

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

Abstract

We propose an experimental study where simplistic organisms rise from inanimate matter and evolve solely through physical interactions. These organisms are composed of three types of macroscopic building blocks floating in an agitated medium. The dynamism of the medium allows the blocks to physically bind with and disband from each other. This results in the emergence of organisms and their reproduction. The process is governed solely by the building blocks’ local interactions in the absence of any blueprint or central command. We demonstrate the feasibility of our approach by realistic computer simulations and a hardware prototype. Our results suggest that an autonomous evolution of non-biological organisms can be realized in human-designed environments and, potentially, in natural environments as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeifer, R., Bongard, J.C.: How the body shapes the way we think. MIT Press, Cambridge (2006)

    Google Scholar 

  2. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. In: Proc. of the 3rd Int. Conf. on Simulation of Adaptive Behavior (SAB 1994), pp. 421–430. MIT Press, Cambridge (1994)

    Google Scholar 

  3. Thompson, A.: Artificial evolution in the physical world. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 101–125. Springer, Heidelberg (1997)

    Google Scholar 

  4. Sims, K.: Evolving virtual creatures. In: Proc. of the 21st Annu. Conf. on Comput. Graphics and Interactive Tech. (SIGGRAPH), pp. 15–22. ACM Press, New York (1994)

    Chapter  Google Scholar 

  5. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  6. Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artif. Life 7(1), 77–87 (2000)

    Article  Google Scholar 

  7. Funes, P., Pollack, J.: Evolutionary body building: Adaptive physical designs for robots. Artif. Life 4(4), 337–357 (1998)

    Article  Google Scholar 

  8. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  9. Chou, H., Reggia, J.A.: Emergence of self-replicating structures in a cellular automata space. Physica D 110(3-4), 252–276 (1997)

    Article  MATH  Google Scholar 

  10. Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system. Artif. Life 4(2), 203–220 (1998)

    Article  Google Scholar 

  11. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39(1), 1–18 (2002)

    Article  Google Scholar 

  12. Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: Evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science 16(4), 227–248 (2004)

    Article  Google Scholar 

  13. Channon, A.: Unbounded evolutionary dynamics in a system of agents that actively process and transform their environment. Genet. Program. Evolvable Mach. 7(3), 253–281 (2006)

    Article  Google Scholar 

  14. Studer, G., Lipson, H.: Spontaneous emergence of self-replicating structures in molecube automata. In: Proc. of the 10th Int. Conf. on the Simulation and Synthesis of Living Systems (Artificial Life X), pp. 227–233. MIT Press, Cambridge (2006)

    Google Scholar 

  15. Smith, A., Turney, P., Ewaschuk, R.: Self-replicating machines in continuous space with virtual physics. Artif. Life 9(1), 21–40 (2003)

    Article  Google Scholar 

  16. Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774 (2002)

    Article  Google Scholar 

  17. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proceedings of the IEEE 96(9), 1490–1508 (2008)

    Article  Google Scholar 

  18. Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)

    Article  Google Scholar 

  19. Jacobson, H.: On models of reproduction. Am. Sci. 46, 255–284 (1958)

    Google Scholar 

  20. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7039), 163–164 (2005)

    Article  Google Scholar 

  21. Griffith, S., Goldwater, D., Jacobson, J.M.: Self-replication from random parts. Nature 437(7059), 636 (2005)

    Article  Google Scholar 

  22. Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: A language for arbitrary morphology generation in self-assembling robots. Swarm Intell 2(2-4), 143–165 (2008)

    Article  Google Scholar 

  23. Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of genetic information. Entropy 3(4), 273–279 (2001)

    Article  Google Scholar 

  24. Magnenat, S., Waibel, M., Beyeler, A.: Enki: The fast 2D robot simulator (2009), http://home.gna.org/enki/

  25. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: A demonstration of the grammatical approach to self-organization. In: Proc. of the 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3684–3691. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  26. White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proc. of the 2005 Robotics: Science and Systems Conf., pp. 161–168. MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groß, R., Magnenat, S., Küchler, L., Massaras, V., Bonani, M., Mondada, F. (2011). Towards an Autonomous Evolution of Non-biological Physical Organisms. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics