Towards an Autonomous Evolution of Non-biological Physical Organisms

  • Roderich Groß
  • Stéphane Magnenat
  • Lorenz Küchler
  • Vasili Massaras
  • Michael Bonani
  • Francesco Mondada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5777)


We propose an experimental study where simplistic organisms rise from inanimate matter and evolve solely through physical interactions. These organisms are composed of three types of macroscopic building blocks floating in an agitated medium. The dynamism of the medium allows the blocks to physically bind with and disband from each other. This results in the emergence of organisms and their reproduction. The process is governed solely by the building blocks’ local interactions in the absence of any blueprint or central command. We demonstrate the feasibility of our approach by realistic computer simulations and a hardware prototype. Our results suggest that an autonomous evolution of non-biological organisms can be realized in human-designed environments and, potentially, in natural environments as well.


Adaptation artificial life evolution evolutionary robotics morphology origin of life self-assembly self-organization self-replication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pfeifer, R., Bongard, J.C.: How the body shapes the way we think. MIT Press, Cambridge (2006)Google Scholar
  2. 2.
    Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: Genetic evolution of a neural-network driven robot. In: Proc. of the 3rd Int. Conf. on Simulation of Adaptive Behavior (SAB 1994), pp. 421–430. MIT Press, Cambridge (1994)Google Scholar
  3. 3.
    Thompson, A.: Artificial evolution in the physical world. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 101–125. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Sims, K.: Evolving virtual creatures. In: Proc. of the 21st Annu. Conf. on Comput. Graphics and Interactive Tech. (SIGGRAPH), pp. 15–22. ACM Press, New York (1994)CrossRefGoogle Scholar
  5. 5.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372 (1994)CrossRefGoogle Scholar
  6. 6.
    Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artif. Life 7(1), 77–87 (2000)CrossRefGoogle Scholar
  7. 7.
    Funes, P., Pollack, J.: Evolutionary body building: Adaptive physical designs for robots. Artif. Life 4(4), 337–357 (1998)CrossRefGoogle Scholar
  8. 8.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  9. 9.
    Chou, H., Reggia, J.A.: Emergence of self-replicating structures in a cellular automata space. Physica D 110(3-4), 252–276 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dittrich, P., Banzhaf, W.: Self-evolution in a constructive binary string system. Artif. Life 4(2), 203–220 (1998)CrossRefGoogle Scholar
  11. 11.
    Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39(1), 1–18 (2002)CrossRefGoogle Scholar
  12. 12.
    Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: Evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science 16(4), 227–248 (2004)CrossRefGoogle Scholar
  13. 13.
    Channon, A.: Unbounded evolutionary dynamics in a system of agents that actively process and transform their environment. Genet. Program. Evolvable Mach. 7(3), 253–281 (2006)CrossRefGoogle Scholar
  14. 14.
    Studer, G., Lipson, H.: Spontaneous emergence of self-replicating structures in molecube automata. In: Proc. of the 10th Int. Conf. on the Simulation and Synthesis of Living Systems (Artificial Life X), pp. 227–233. MIT Press, Cambridge (2006)Google Scholar
  15. 15.
    Smith, A., Turney, P., Ewaschuk, R.: Self-replicating machines in continuous space with virtual physics. Artif. Life 9(1), 21–40 (2003)CrossRefGoogle Scholar
  16. 16.
    Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774 (2002)CrossRefGoogle Scholar
  17. 17.
    Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proceedings of the IEEE 96(9), 1490–1508 (2008)CrossRefGoogle Scholar
  18. 18.
    Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)CrossRefGoogle Scholar
  19. 19.
    Jacobson, H.: On models of reproduction. Am. Sci. 46, 255–284 (1958)Google Scholar
  20. 20.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7039), 163–164 (2005)CrossRefGoogle Scholar
  21. 21.
    Griffith, S., Goldwater, D., Jacobson, J.M.: Self-replication from random parts. Nature 437(7059), 636 (2005)CrossRefGoogle Scholar
  22. 22.
    Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: A language for arbitrary morphology generation in self-assembling robots. Swarm Intell 2(2-4), 143–165 (2008)CrossRefGoogle Scholar
  23. 23.
    Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of genetic information. Entropy 3(4), 273–279 (2001)CrossRefGoogle Scholar
  24. 24.
    Magnenat, S., Waibel, M., Beyeler, A.: Enki: The fast 2D robot simulator (2009),
  25. 25.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: A demonstration of the grammatical approach to self-organization. In: Proc. of the 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3684–3691. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  26. 26.
    White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proc. of the 2005 Robotics: Science and Systems Conf., pp. 161–168. MIT Press, Cambridge (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roderich Groß
    • 1
  • Stéphane Magnenat
    • 1
  • Lorenz Küchler
    • 1
  • Vasili Massaras
    • 1
  • Michael Bonani
    • 1
  • Francesco Mondada
    • 1
  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations