Functional and Structural Topologies in Evolved Neural Networks

  • Joseph T. Lizier
  • Mahendra Piraveenan
  • Dany Pradhana
  • Mikhail Prokopenko
  • Larry S. Yaeger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5777)


The topic of evolutionary trends in complexity has drawn much controversy in the artificial life community. Rather than investigate the evolution of overall complexity, here we investigate the evolution of topology of networks in the Polyworld artificial life system. Our investigation encompasses both the actual structure of neural networks of agents in this system, and logical or functional networks inferred from statistical dependencies between nodes in the networks. We find interesting trends across several topological measures, which together imply a trend of more integrated activity across the networks (with the networks taking on a more “small-world” character) with evolutionary time.


Mutual Information Structural Topology Information Transfer Functional Network Closeness Centrality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bedau, M.A.: The evolution of complexity. In: Barberousse, A., Morange, M., Pradeu, T. (eds.) Mapping the Future of Biology. Boston Studies In The Philosophy Of Science, vol. 266, pp. 111–130. Springer, Netherlands (2009)CrossRefGoogle Scholar
  2. 2.
    Gould, S.J.: The evolution of life on earth. Scientific American 271(4), 62–69 (1994)CrossRefGoogle Scholar
  3. 3.
    Maynard Smith, J.: Time in the evolutionary process. Studium Generale 23, 266–272 (1970)Google Scholar
  4. 4.
    Yaeger, L., Sporns, O.: Evolution of neural structure and complexity in a computational ecology. In: Rocha, L.M., Yaeger, L.S., Bedau, M.A., Floeano, D., Goldstone, R.L., Vespignani, A. (eds.) Proceedings of the Tenth International Conference on Simulation and Synthesis of Living Systems (ALifeX), Bloomington, Indiana, USA, pp. 330–336. MIT Press, Cambridge (2006)Google Scholar
  5. 5.
    Yaeger, L., Griffith, V., Sporns, O.: Passive and driven trends in the evolution of complexity. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems (ALifeXI), Winchester, UK, pp. 725–732. MIT Press, Cambridge (2008)Google Scholar
  6. 6.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2, 56–78 (1994)CrossRefGoogle Scholar
  7. 7.
    Honey, C.J., Kotter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences 104(24), 10240–10245 (2007)CrossRefGoogle Scholar
  8. 8.
    MacKay, D.J.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  9. 9.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)CrossRefGoogle Scholar
  10. 10.
    Watts, D.J., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  11. 11.
    Yaeger, L.S.: Computational genetics, physiology, metabolism, neural systems, learning, vision and behaviour or polyworld: Life in a new context. In: Langton, C.G. (ed.) Proceedings of the Artificial Life III Conference, Santa Fe, NM, USA, pp. 263–298. Addison-Wesley, Reading (1994)Google Scholar
  12. 12.
    Lizier, J.T., Prokopenko, M.: Differentiating information transfer and causal effect, Euro. Phys. J. B. 73(4), 605–615 (2009)Google Scholar
  13. 13.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spatiotemporal filter for complex systems. Phys. Rev. E 77(2), 26110 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Bettencourt, L.M.A., Stephens, G.J., Ham, M.I., Gross, G.W.: Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E 75(2), 21915 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sporns, O., Rubinov, M., Kötter, R.: Brain connectivity toolbox (2009),
  16. 16.
    Newman, M.: Assortative mixing in networks. Phy. Rev. Lett. 89(20), 208701 (2002)CrossRefGoogle Scholar
  17. 17.
    Newman, M.: Mixing patterns in networks. Phy. Rev. E 67(2), 26126 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Piraveenan, M., Prokopenko, M., Zomaya, A.Y.: Local assortativeness in scale free networks. Euro. Phys. Lett. 89(2), 28002 (2008)CrossRefGoogle Scholar
  19. 19.
    Shimbel, A.: Structural parameters of communication networks. Bulletin of Mathematical Biology 15(4), 501–507 (1953)MathSciNetGoogle Scholar
  20. 20.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/Crc Mathematical and Computational Biology Series. Chapman & Hall/CRC (July 2006)Google Scholar
  21. 21.
    Dorogovtsev, S., Mendes, J.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 189–207. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biology 2(11), e369 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joseph T. Lizier
    • 1
    • 2
  • Mahendra Piraveenan
    • 1
    • 2
  • Dany Pradhana
    • 1
  • Mikhail Prokopenko
    • 1
  • Larry S. Yaeger
    • 3
  1. 1.CSIRO Information and Communications Technology CentreNorth RydeAustralia
  2. 2.School of Information TechnologiesThe University of SydneyAustralia
  3. 3.School of InformaticsIndiana UniversityBloomingtonUSA

Personalised recommendations