Shared Mental Models

A Conceptual Analysis
  • Catholijn M. Jonker
  • M. Birna van Riemsdijk
  • Bas Vermeulen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6541)


The notion of a shared mental model is well known in the literature regarding team work among humans. It has been used to explain team functioning. The idea is that team performance improves if team members have a shared understanding of the task that is to be performed and of the involved team work. We maintain that the notion of shared mental model is not only highly relevant in the context of human teams, but also for teams of agents and for human-agent teams. However, before we can start investigating how to engineer agents on the basis of the notion of shared mental model, we first have to get a better understanding of the notion, which is the aim of this paper. We do this by investigating which concepts are relevant for shared mental models, and modeling how they are related by means of UML. Through this, we obtain a mental model ontology. Then, we formally define the notion of shared mental model and related notions. We illustrate our definitions by means of an example.


Team Member Mental Model Team Performance Team Work Team Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akkoyunlu, E., Ekanadham, K., Huber, R.: Some constraints and tradeoffs in the design of network communications. In: Proceedings of the Fifth ACM Symposium on Operating Systems Principles (SOSP 1975), pp. 67–74. ACM, New York (1975)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The description logic handbook: Theory, implementation, and applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Bolstad, C., Endsley, M.: Shared mental models and shared displays: An empirical evaluation of team performance. Human Factors and Ergonomics Society Annual Meeting Proceedings 43(3), 213–217 (1999)CrossRefGoogle Scholar
  4. 4.
    Bradshaw, J., Feltovich, P., Jung, H., Kulkami, S., Allen, J., Bunch, L., Chambers, N., Galescu, L., Jeffers, R., Johnson, M., Sierhuis, M., Taysom, W., Uszok, A., Hoof, R.V.: Policy-based coordination in joint human-agent activity. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2029–2036 (2004)Google Scholar
  5. 5.
    Buckland, M., Gey, F.: The relationship between recall and precision. Journal of the American Society for Information Science 45(1), 12–19 (1994)CrossRefGoogle Scholar
  6. 6.
    Cannon-Bowers, J.A., Salas, E., Converse, S.: Shared mental models in expert team decision making. In: Castellan, N.J. (ed.) Individual and Group Decision Making, pp. 221–245. Lawrence Erlbaum Associates, Mahwah (1993)Google Scholar
  7. 7.
    Clark, A., Chalmers, D.J.: The extended mind. Analysis 58, 10–23 (1998)CrossRefGoogle Scholar
  8. 8.
    Cohen, P., Levesque, H.: Teamwork. Nous, 487–512 (1991)Google Scholar
  9. 9.
    Doyle, J., Ford, D.: Mental models concepts for system dynamics research. System Dynamics Review 14(1), 3–29 (1998)CrossRefGoogle Scholar
  10. 10.
    Francois, C.: Systemics and cybernetics in a historical perspective. Systems Research and Behavioral Science 16, 203–219 (1999)CrossRefGoogle Scholar
  11. 11.
    Gentner, D., Stevens, A.: Mental Models. Lawrence Erlbaum Associates, New Jersey (1983)Google Scholar
  12. 12.
    Grosz, B., Kraus, S.: Collaborative plans for complex group action. Journal of Artifical Intelligence 86(2), 269–357 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hindriks, K., van Riemsdijk, M.B.: A computational semantics for communicating rational agents based on mental models. In: Braubach, L., Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS (LNAI), vol. 5919, pp. 31–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Hindriks, K.V.: Programming rational agents in GOAL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Tools and Applications. Springer, Berlin (2009)CrossRefGoogle Scholar
  15. 15.
    Jennings, N.: Controlling cooperative problem solving in industrial multi-agent systems using joint intentions. Artificial Intelligence Journal 74(2) (1995)Google Scholar
  16. 16.
    Johnson, M., Jonker, C., van Riemsdijk, M.B., Feltovich, P.J., Bradshaw, J.M.: Joint activity testbed: Blocks world for teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge University Press, Cambridge (1983)Google Scholar
  18. 18.
    Jonker, C., Treur, J.: Compositional verification of multi-agent systems: a formal analysis of pro-activeness and reactiveness. International Journal of Cooperative Information Systems 11, 51–92 (2002)CrossRefGoogle Scholar
  19. 19.
    Klein, G., Feltovich, P., Bradshaw, J., Woods, D.: Common ground and coordination in joint activity. In: Organizational Simulation, pp. 139–184 (2004)Google Scholar
  20. 20.
    Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intelligent Systems 19(6), 91–95 (2004)CrossRefGoogle Scholar
  21. 21.
    Lim, B., Klein, K.: Team mental models and team performance: A field study of the effects of team mental model similarity and accuracy. Journal of Organizational Behavior 27(4), 403 (2006)CrossRefGoogle Scholar
  22. 22.
    Mathieu, E., Heffner, T.S., Goodwin, G., Salas, E., Cannon-Bowers, J.: The influence of shared mental models on team process and performance. The Journal of Applied Psychology 85(2), 273–283 (2000)CrossRefGoogle Scholar
  23. 23.
    Minsky, M.: A framework for representing knowledge. The Psychology of Computer Vision (1975)Google Scholar
  24. 24.
    Rouse, W., Morris, N.: On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin 100(3), 349–363 (1986)CrossRefGoogle Scholar
  25. 25.
    Sycara, K., Sukthankar, G.: Literature review of teamwork models. Technical Report CMU-RI-TR-06-50, Carnegie Mellon University (2006)Google Scholar
  26. 26.
    Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124 (1997)Google Scholar
  27. 27.
    Yen, J., Fan, X., Sun, S., Hanratty, T., Dumer, J.: Agents with shared mental models for enhancing team decision makings. Decision Support Systems 41(3), 634–653 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Catholijn M. Jonker
    • 1
  • M. Birna van Riemsdijk
    • 1
  • Bas Vermeulen
    • 2
  1. 1.EEMCSDelft University of TechnologyDelftThe Netherlands
  2. 2.ForceVisionDen HelderThe Netherlands

Personalised recommendations