Using a Normative Framework to Explore the Prototyping of Wireless Grids

  • Tina Balke
  • Marina De Vos
  • Julian Padget
  • Frank Fitzek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6541)


The capacity for normative frameworks to capture the essential features of interactions between components in open architectures suggests they might also be of assistance in an early, rapid prototyping phase of system development, helping to refine concepts, identify actors, explore policies and evaluate feasibility. As an exercise to examine this thesis, we investigate the concept of the wireless grid. Wireless grids have been proposed to address the energy issues arising from a new generation of mobile phones, the idea being that local communication with other mobile phones, being cheaper, can be used in combination with network communication to achieve common goals while at the same time extending the battery duty cycle. This results in a social dilemma, as it is advantageous for rational users to benefit from the energy savings without any contribution to the cooperation, as every commitment has its price. We present a necessarily simplified model, whose purpose is to provide us with the foundation to explore issues in the management of such a framework, policies to encourage collaborative behaviour, and the means to evaluate the effects on energy consumption.


Mobile Phone Normative Framework Mobile Phone User Cooperation Partner Exogenous Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the causal calculator. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Axelrod, R.: The emergence of cooperation among egoists. The American Political Science Review 75(2), 306–318 (1981)CrossRefGoogle Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boella, G., van der Torre, L.: Constitutive Norms in the Design of Normative Multiagent Systems. In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 303–319. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems using Answer Set Programming. PhD thesis, University of Bath (2007)Google Scholar
  6. 6.
    Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and reasoning about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Cliffe, O., De Vos, M., Padget, J.: Specifying and reasoning about multiple institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 67–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153, 49–104 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fitzek, F.H.P., Katz, M.D.: Cellular controlled peer to peer communications: Overview and potentials. In: Fitzek, F.H.P., Katz, M.D. (eds.) Cognitive Wireless Networks, pp. 31–59. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving. In: Proceeding of IJCAI 2007, pp. 386–392 (2007)Google Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 365–386 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hopton, L., Cliffe, O., De Vos, M., Padget, J.: InstQL: A query language for virtual institutions using answer set programming. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS, vol. 6214, pp. 102–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Jones, A.J., Sergot, M.: A Formal Characterisation of Institutionalised Power. ACM Computing Surveys 28(4es), 121 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Katz, M.D., Fitzek, F.H.P.: Cooperation in 4g networks - cooperation in a heterogenous wireless world. In: Fitzek, F.H.P., Katz, M.D. (eds.) Cooperation in Wireless Networks: Principles and Applications, pp. 463–496. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus. Journal of Logic Programming 31(1-3), 39–58 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded semantics for normal LP. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Ostrom, E.: Coping with tragedies of the commons. Annual Review of Political Science 2, 493–535 (1999); Workshop in Political Theory and Policy Analysis; Center for the Study of Institutions, Population, and Environmental ChangeCrossRefGoogle Scholar
  18. 18.
    Perrucci, G.P., Fitzek, F.: Measurements campaign for energy consumption on mobile phones. Technical report, Aalborg University (2009)Google Scholar
  19. 19.
    Perrucci, G.P., Fitzek, F.H., Petersen, M.V.: Energy saving aspects for mobile device exploiting heterogeneous wireless networks. In: Heterogeneous Wireless Access Networks. Springer, US (2009)Google Scholar
  20. 20.
    Sergot, M.: (C+)++: An Action Language for Representing Norms and Institutions. Technical report, Imperial College, London (2004)Google Scholar
  21. 21.
    TNS. Two-day battery life tops wish list for future all-in-one phone device. Technical report, Taylor Nelson Sofres, 004Google Scholar
  22. 22.
    Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. AAMAS 11(3), 307–360 (2005)Google Scholar
  23. 23.
    Dignum, V.: A Model for Organizational Interaction Based on Agents, Founded in Logic. PhD thesis, Utrecht University (2004)Google Scholar
  24. 24.
    Wrona, K., Mähönen, P.: Analytical model of cooperation in ad hoc networks. Telecommunication Systems 27(2-4), 347–369 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tina Balke
    • 1
  • Marina De Vos
    • 2
  • Julian Padget
    • 2
  • Frank Fitzek
    • 3
  1. 1.Chair of Information Systems ManagementUniversity of BayreuthGermany
  2. 2.Dept. of Computer ScienceUniversity of BathUK
  3. 3.Multimedia Information and Signal ProcessingUniversity of AalborgDenmark

Personalised recommendations