The Fundamental Principle of Coactive Design: Interdependence Must Shape Autonomy

  • Matthew Johnson
  • Jeffrey M. Bradshaw
  • Paul J. Feltovich
  • Catholijn M. Jonker
  • Birna van Riemsdijk
  • Maarten Sierhuis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6541)


This article presents the fundamental principle of Coactive Design, a new approach being developed to address the increasingly sophisticated roles for both people and agents in mixed human-agent systems. The fundamental principle of Coactive Design is that the underlying interdependence of participants in joint activity is a critical factor in the design of human-agent systems. In order to enable appropriate interaction, an understanding of the potential interdependencies among groups of humans and agents working together in a given situation should be used to shape the way agent architectures and individual agent capabilities for autonomy are designed. Increased effectiveness in human-agent teamwork hinges not merely on trying to make agents more independent through their autonomy, but also in striving to make them more capable of sophisticated interdependent joint activity with people.


Coactive autonomy interdependence joint activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradshaw, J.M., Feltovich, P., Johnson, M.: Human-Agent Interaction. In: Boy, G. (ed.) Handbook of Human-Machine Interaction. Ashgate (2011) (in press)Google Scholar
  2. 2.
    Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R., Feltovich, P.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intelligent Systems 19(6), 91–95 (2004)CrossRefGoogle Scholar
  3. 3.
    Allen, J.E., Guinn, C.I., Horvtz, E.: Mixed-Initiative Interaction. IEEE Intelligent Systems 14(5), 14–23 (1999)CrossRefGoogle Scholar
  4. 4.
    Kortenkamp, D.: Designing an Architecture for Adjustably Autonomous Robot Teams. Revised Papers from the PRICAI, Workshop Reader, Four Workshops held at PRICAI 2000, on Advances in Artificial Intelligence. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Fong, T.W.: Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2001)Google Scholar
  6. 6.
    Brookshire, J., Singh, S., Simmons, R.: Preliminary Results in Sliding Autonomy for Coordinated Teams. In: Proceedings of The 2004 Spring Symposium Series (2004)Google Scholar
  7. 7.
    Bradshaw, J.M., Acquisti, A., Allen, J., Breedy, M.R., Bunch, L., Chambers, N., Feltovich, P., Galescu, L., Goodrich, M.A., Jeffers, R., Johnson, M., Jung, H., Lott, J., Olsen Jr., D.R., Sierhuis, M., Suri, N., Taysom, W., Tonti, G., Uszok, A.: Teamwork-centered autonomy for extended human-agent interaction in space applications. Presented at the AAAI 2004 Spring Symposium, March 22-24. Stanford University, CA (2004)Google Scholar
  8. 8.
    Bradshaw, J.M., Feltovich, P., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions of adjustable autonomy and mixed-initiative interaction. In: Nickles, M., Rovatsos, M., Weiss, G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969, pp. 17–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Castelfranchi, C.: Founding Agents “Autonomy” on Dependence Theory. In: ECAI 2000, pp. 353–357 (2000)Google Scholar
  10. 10.
    Fitts, P.M.: Human engineering for an effective air-navigation and traffic-control system, p. 84, xii. National Research Council, Division of Anthropology and Psychology, Committee on Aviation Psychology, Washington (1951)Google Scholar
  11. 11.
    Sheridan, T.B.: Telerobotics, automation, and human supervisory control, p. 393, xx. MIT Press, Cambridge (1992)Google Scholar
  12. 12.
    Dorais, G., Kortenkamp, D.: Designing Human-Centered Autonomous Agents. Revised Papers from the PRICAI 2000, Workshop Reader, Four Workshops held at PRICAI 2000, on Advances in Artificial Intelligence. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Dias, M.B., Kannan, B., Browning, B., Jones, E., Argall, B., Dias, M.F., Zinck, M.B., Veloso, M.M., Stentz, A.T.: Sliding Autonomy for Peer-To-Peer Human-Robot Teams. Robotics Institute, Pittsburgh (2008); Myers, K.L., Morley, D.N.: Directing Agent Communities: An Initial Framework. In: Proceedings of the IJCAI Workshop on Autonomy, Delegation, and Control: Interacting with Autonomous Agents, Seattle, WA (2001)Google Scholar
  14. 14.
    Myers, K.L., Morley, D.N.: Human directability of agents. In: Proceedings of the 1st International Conference on Knowledge Capture. ACM, Victoria (2001)Google Scholar
  15. 15.
    Murphy, R., Casper, J., Micire, M., Hyams, J.: Mixed-initiative Control of Multiple Heterogeneous Robots for USAR (2000)Google Scholar
  16. 16.
    Yanco, H.A., Drury, J.L.: A Taxonomy for Human-Robot Interaction. In: AAAI Fall Symposium on Human-Robot Interaction (2002)Google Scholar
  17. 17.
    Parasuraman, R., Sheridan, T., Wickens, C.: A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man and Cybernetics, Part A 30(3), 286–297 (2000)CrossRefGoogle Scholar
  18. 18.
    Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum.-Comput. Interact. 1(3), 203–275 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Stubbs, K., Hinds, P., Wettergreen, D.: Autonomy and common ground in human-robot interaction: A field study. IEEE Intelligent Systems (Special Issue on Interacting with Autonomy), 42–50 (2007) Google Scholar
  20. 20.
    Norman, D.A.: The “problem” of automation: Inappropriate feedback and interaction, not “over-automation”. In: Broadbent, D.E., Baddeley, A., Reason, J.T. (eds.) Human Factors in Hazardous Situations, pp. 585–593. Oxford University Press, Oxford (1990)Google Scholar
  21. 21.
    Woods, D.D., Sarter, N.B.: Automation Surprises. In: Salvendy, G. (ed.) Handbook of Human Factors & Ergonomics. Wiley, Chichester (1997)Google Scholar
  22. 22.
    Clark, H.H.: Using language, p. 432, xi. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  23. 23.
    Klein, G., Feltovich, P.J., Bradshaw, J.M., Woods, D.D.: Common Ground and Coordination in Joint Activity. In: William, K.R.B., Rouse, B. (eds.) Organizational Simulation, pp. 139–184 (2005)Google Scholar
  24. 24.
    Thompson, J.D.: Organizations in action; social science bases of administrative theory, p. 192, xi. McGraw-Hill, New York (1967)Google Scholar
  25. 25.
    Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M.: Toward an Ontology of Regulation: Socially-Based Support for Coordination in Human and Machine Joint Activity. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 175–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Comput. Surv. 26(1), 87–119 (1994)CrossRefGoogle Scholar
  27. 27.
    Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M., Bunch, L.: Progress Appraisal as a Challenging Element of Coordination in Human and Machine Joint Activity. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995, pp. 124–141. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Covey, S.R.: The 7 Habits of Highly Effective People. Free Press, New York (1989)Google Scholar
  29. 29.
  30. 30.
    Sierhuis, M.: “It’s not just goals all the way down” – “It’s activities all the way down”. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 1–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Office of the Secretary of Defense, Unmanned Systems Roadmap (2007-2032)Google Scholar
  32. 32.
    van Diggelen, J., Bradshaw, J.M., Johnson, M., Uszok, A., Feltovich, P.: Implementing collective oblications in human-agent teams using KAoS policies. In: Proceedings of Workshop on Coordination, Organization, Institutions and Norms (COIN), IEEE/ACM Conference on Autonomous Agents and Multi-Agent Systems, Budapest, Hungary, May 12 (2009)Google Scholar
  33. 33.
    Johnson, M., Jonker, C., van Riemsdijk, B., Feltovich, P.J., Bradshaw, J.M.: Joint Activity Testbed: Blocks World for Teams (BW4T). In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS, vol. 5881, pp. 254–256. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Bleicher, A.: The Gulf Spill’s Lessons for Robotics. In: IEEE spectrum special report (2010)Google Scholar
  35. 35.
    Jean, G.V.: Duty Aboard the Littoral Combat Ship: Grueling but Manageable in National Defense (2010)Google Scholar
  36. 36.
    Christoffersen, K., Woods, D.D.: How to Make Automated Systems Team Players (2002)Google Scholar
  37. 37.
    Norman, D.A.: The invisible computer: why good products can fail, the personal computer is so complex, and information appliances are the solution, p. 302, xii. MIT Press, Cambridge (1998)Google Scholar
  38. 38.
    Kidd, P.T.: Design of human-centered robotic systems. In: Rahimi, M., Karwowski, W. (eds.) Human-Robot Interaction, pp. 225–241. Taylor & Francis, Abington (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthew Johnson
    • 1
    • 2
  • Jeffrey M. Bradshaw
    • 1
  • Paul J. Feltovich
    • 1
  • Catholijn M. Jonker
    • 2
  • Birna van Riemsdijk
    • 2
  • Maarten Sierhuis
    • 2
    • 3
  1. 1.Florida Institute for Human and Machine Cognition (IHMC)PensacolaUSA
  2. 2.EEMCSDelft University of TechnologyDelftThe Netherlands
  3. 3.PARCPalo AltoUSA

Personalised recommendations