Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option

  • Ajalmar R. da Rocha Neto
  • Ricardo Sousa
  • Guilherme de A. Barreto
  • Jaime S. Cardoso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)

Abstract

Computer aided diagnosis systems with the capability of automatically decide if a patient has or not a pathology and to hold the decision on the dificult cases, are becoming more frequent. The latter are afterwards reviewed by an expert reducing therefore time consuption on behalf of the expert. The number of cases to review depends on the cost of erring the diagnosis. In this work we analyse the incorporation of the option to hold a decision on the diagnostic of pathologies on the vertebral column. A comparison with several state of the art techniques is performed. We conclude by showing that the use of the reject option techniques is an asset in line with the current view of the research community.

Keywords

Computer Aided Diagnosis System Pattern Recognition Support Vector Machines Reject Option 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berthonnaud, E., Dimnet, J., Roussouly, P., Labelle, H.: Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. Journal of Spinal Disorders & Techniques 18(1), 40–47 (2005)CrossRefGoogle Scholar
  2. 2.
    Brause, R.: Revolutionieren neuronale netze unsere vorhersagefigkeiten. Zentralblatt fr Chirurgie, 692–698 (1999)Google Scholar
  3. 3.
    Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: the data replication method. Journal of Machine Learning Research 8, 1393–1429 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Dreiseitl, S., Binder, M.: Do physicians value decision support? A look at the effect of decision support systems on physician opinion. Artificial Intelligence in Medicine 33(1), 25–30 (2005)CrossRefGoogle Scholar
  5. 5.
    Florea, F., Rogozan, A., Bensrhair, A., Darmoni, S.J.: Comparison of feature-selection and classification techniques for medical images modality categorization. Rapport Interne PSI No. 01/FIF (2004)Google Scholar
  6. 6.
    Fumera, G., Roli, F.: Support Vector Machines with Embedded Reject Option. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 68–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Neto, A.R.R., Barreto, G.A.: On the application of ensembles of classifiers to the diagnosis of pathologies of the vertebral column: A comparative analysis. IEEE Transactions on Latin America 7(4), 487–496 (2009)CrossRefGoogle Scholar
  8. 8.
    Neto, A.R.R., Barreto, G.A., Cortez, P.C., da Mota, H.: SINPATCO: Sistema inteligente para diagnóstico de patologias da coluna vertebral. In: Congresso Brasileiro de Automática, pp. 929–934 (2006)Google Scholar
  9. 9.
    Sousa, R., Mora, B., Cardoso, J.S.: An ordinal data method for the classification with reject option. In: Proceedings of The Eighth International Conference on Machine Learning and Applications, ICMLA 2009 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ajalmar R. da Rocha Neto
    • 1
  • Ricardo Sousa
    • 2
  • Guilherme de A. Barreto
    • 1
  • Jaime S. Cardoso
    • 2
  1. 1.Depto. Engenharia de TeleinformáticaUniversidade Federal do Ceará (UFC)Brazil
  2. 2.INESC PortoFaculdade de Engenharia da Universidade do PortoPortugal

Personalised recommendations