Advertisement

Automatic Detection of Facial Feature Points via HOGs and Geometric Prior Models

  • Mario Rojas Quiñones
  • David Masip
  • Jordi Vitrià
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)

Abstract

Most applications dealing with problems involving the face require a robust estimation of the facial salient points. Nevertheless, this estimation is not usually an automated preprocessing step in applications dealing with facial expression recognition. In this paper we present a simple method to detect facial salient points in the face. It is based on a prior Point Distribution Model and a robust object descriptor. The model learns the distribution of the points from the training data, as well as the amount of variation in location each point exhibits. Using this model, we reduce the search areas to look for each point. In addition, we also exploit the global consistency of the points constellation, increasing the detection accuracy. The method was tested on two separate data sets and the results, in some cases, outperform the state of the art.

Keywords

Salient Point Detection Histogram of Oriented Gradients Ensemble learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohn, J.F., Sayette, M.A.: Spontaneous facial expression in a small group can be automatically measured: An initial demonstration. Behavior Research Methods (in press)Google Scholar
  2. 2.
    Cristinacce, D., Cootes, T.: Feature detection and tracking with constrained local models. In: Proceedings of British Machine Vision Conference, vol. 3, pp. 929–938 (2006)Google Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)Google Scholar
  4. 4.
    Hastie, J.F.T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28(2), 337–374 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Jesorsky, O., Kirchberg, K., Frischholz, R.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53 (2000)Google Scholar
  7. 7.
    Kozakaya, T., Shibata, T., Yuasa, M., Yamaguchi, O.: Facial feature localization using weighted vector concentration approach. Image and Vision Computing 28(5), 772–780 (2010)CrossRefGoogle Scholar
  8. 8.
    Lepetit, V., Fua, P.: Keypoint Recognition Using Randomized Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1465–1479 (2006)Google Scholar
  9. 9.
    Mayer, C., Wimmer, M., Radig, B.: Adjusted pixel features for robust facial component classification. Image and Vision Computing 28(5), 762–771 (2010)CrossRefGoogle Scholar
  10. 10.
    Shinohara, Y., Otsuf, N.: Facial expression recognition using fisher weight maps. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 499–504 (2004)Google Scholar
  11. 11.
    Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2729–2736 (2010)Google Scholar
  12. 12.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2), 137–154 (2002)CrossRefGoogle Scholar
  13. 13.
    Vukadinovic, D., Pantic, M.: Fully Automatic Facial Feature Point Detection Using Gabor Feature Based Boosted Classifiers. In: IEEE International Conference on Systems, Man and Cybernetics (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mario Rojas Quiñones
    • 1
  • David Masip
    • 1
    • 2
  • Jordi Vitrià
    • 1
    • 3
  1. 1.Computer Vision CenterUniversitat Autònoma de BarcelonaSpain
  2. 2.Universitat Oberta de CatalunyaSpain
  3. 3.Dept. de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaSpain

Personalised recommendations