Viola-Jones Based Detectors: How Much Affects the Training Set?

  • Modesto Castrillón-Santana
  • Daniel Hernández-Sosa
  • Javier Lorenzo-Navarro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)


This paper presents a study on the facial feature detection performance achieved using the Viola-Jones framework. A set of classifiers using two different focuses to gather the training samples is created and tested on four different datasets covering a wide range of possibilities. The results achieved should serve researchers to choose the classifier that better fits their demands.


Viola-Jones detectors facial feature detection training sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. on PAMI 19(7), 711–720 (1997)CrossRefGoogle Scholar
  2. 2.
    Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of cascades of boosted ensembles for face detection. International Journal of Computer Vision 77, 65–86 (2008)CrossRefGoogle Scholar
  3. 3.
    Carnegie Mellon University: CMU/VACS image database: Frontal face images (1999), (last accesed May 11, 2007)
  4. 4.
    Castrillón, M., Déniz, O., Hernández, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the violajones general object detection framework. Machine Vision and Applications (2010) (in press)Google Scholar
  5. 5.
    Hjelmas, E., Low, B.K.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001), CrossRefMATHGoogle Scholar
  6. 6.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts, Amherst (October 2007)Google Scholar
  7. 7.
    Intel: Intel Open Source Computer Vision Library, v2.1 (April 2010), (last visited June 2010)
  8. 8.
    Jain, V., Learned-Miller., E.: Fddb: A benchmark for face detection in unconstrained settings. Tech. rep., University of Massachusetts, Amherst (2010)Google Scholar
  9. 9.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903 (September 2002)Google Scholar
  11. 11.
    Reimondo, A.: Haar cascades repository (2007), (last visited April 2010)
  12. 12.
    Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(1), 23–38 (1998)CrossRefGoogle Scholar
  13. 13.
    Schneiderman, H., Kanade, T.: A statistical method for 3d object detection applied to faces and cars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1759 (2000)Google Scholar
  14. 14.
    Seo, N.: Tutorial: OpenCV haartraining (rapid object detection with a cascade of boosted classifiers based on haar-like features), (last visited June 2010)
  15. 15.
    Sung, K.K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(1), 39–51 (1998)CrossRefGoogle Scholar
  16. 16.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 151–173 (2004)CrossRefGoogle Scholar
  17. 17.
    Yang, M.H., Kriegman, D., Ahuja, N.: Detecting faces in images: A survey. Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Modesto Castrillón-Santana
    • 1
  • Daniel Hernández-Sosa
    • 1
  • Javier Lorenzo-Navarro
    • 1
  1. 1.SIANI Edif. Central del Parque Científico TecnológicoUniversidad de Las Palmas de Gran CanariaSpain

Personalised recommendations