Dual Layer Voting Method for Efficient Multi-label Classification

  • Gjorgji Madjarov
  • Dejan Gjorgjevikj
  • Sašo Džeroski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)


A common approach for solving multi-label classification problems using problem-transformation methods and dichotomizing classifiers is the pairwise decomposition strategy. One of the problems with this approach is the need for querying a quadratic number of binary classifiers for making a prediction that can be quite time consuming, especially in classification problems with large number of labels. To tackle this problem we propose a Dual Layer Voting Method (DLVM) for efficient pair-wise multiclass voting to the multi-label setting, which is related to the calibrated label ranking method. Five different real-world datasets (enron, tmc2007, genbase, mediamill and corel5k) were used to evaluate the performance of the DLVM. The performance of this voting method was compared with the majority voting strategy used by the calibrated label ranking method and the quick weighted voting algorithm (QWeighted) for pair-wise multi-label classification. The results from the experiments suggest that the DLVM significantly outperforms the concurrent algorithms in term of testing speed while keeping comparable or offering better prediction performance.


Multi-label classification calibration label calibrated label ranking voting strategy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2(5), 721–747 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Wu, T.F., Lin, C.J., Weng, C.R.: Probability estimates for multiclass classification by pairwise coupling. Journal of Machine Learning Research 5(8), 975–1005 (2004)zbMATHGoogle Scholar
  3. 3.
    Brinker, K., Fürnkranz, J., Hullermeier, E.: A unified model for multilabel classification and ranking. In: 17th European Conference on Artificial Intelligence, Riva Del Garda, Italy, pp. 489–493 (2006)Google Scholar
  4. 4.
    Park, S.H., Fürnkranz, J.: Efficient pairwise classification. In: 18th European Conference on Machine Learning, Warsaw, Poland, pp. 658–665 (2007)Google Scholar
  5. 5.
    Loza Mencía, E., Park, S.H., Furnkranz, J.: Efficient voting prediction for pairwise multi-label classification. Neurocomputing 73, 1164–1176 (2010)CrossRefGoogle Scholar
  6. 6.
    Fürnkranz, J., Hullermeier, E., Loza Mencia, E., Brinker, K.: Multi-label classification via calibrated label ranking. Machine Learning 73(2), 133–153 (2008)CrossRefGoogle Scholar
  7. 7.
    Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text categorization. Machine Learning 39(2), 135–168 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    Srivastava, A., Zane-Ulman, B.: Discovering recurring anomalies in text reports regarding complex space systems. In: Proceedings of the IEEE Aerospace Conference, pp. 55–63 (2005)Google Scholar
  13. 13.
    Diplaris, P.M.S., Tsoumakas, G., Vlahavas, I.: Protein classification with multiple algorithms. In: Proceedings of 10th Panhellenic Conference on Informatics, Volos, Greece, pp. 448–456 (2005)Google Scholar
  14. 14.
    Tsoumakas, G., Katakis, I.: Multi label classification: An overview. International Journal of Data Warehousing and Mining 3 (2007)Google Scholar
  15. 15.
    Snoek, C.G.M., Worring, M., Van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W.M.: The Challenge Problem for Automated Detection of 101 Semantic Concepts in Multimedia. In: Proceedings of ACM Multimedia, Santa Barbara, USA, pp. 421–430 (2006)Google Scholar
  16. 16.
    Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers. MIT Press, Cambridge (1999)Google Scholar
  18. 18.
    Quinlan, J.R.: C4.5:Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gjorgji Madjarov
    • 1
    • 2
  • Dejan Gjorgjevikj
    • 1
  • Sašo Džeroski
    • 2
  1. 1.FEEITSs. Cyril and Methodius UniversitySkopjeMacedonia
  2. 2.DKTJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations