Automatic and Semi-automatic Analysis of the Extension of Myocardial Infarction in an Experimental Murine Model

  • Tiago Esteves
  • Mariana Valente
  • Diana S. Nascimento
  • Perpétua Pinto-do-Ó
  • Pedro Quelhas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)


Rodent models of myocardial infarction (MI) have been extensively used in biomedical research towards the implementation of novel regenerative therapies. Permanent ligation of the left anterior descending (LAD) coronary artery is a commonly used method for inducing MI both in rat and mouse. Post-mortem evaluation of the heart, particularly the MI extension assessment performed on histological sections, is a critical parameter for this experimental setting. MI extension, which is defined as the percentage of the left ventricle affected by the coronary occlusion, has to be estimated by identifying the infarcted- and the normal-tissue in each section. However, because it is a manual procedure it is time-consuming, arduous and prone to bias. Herein, we introduce semi-automatic and automatic approaches to perform segmentation which is then used to obtain the infarct extension measurement. Experimental validation is performed comparing the proposed approaches with manual annotation and a total error not exceeding 8% is reported in all cases.


Infarct extension evaluation image segmentation region growing otsu k-means meanshift watershed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Degabriele, N., Griesenbach, U., Sato, K.: Critical appraisal of the mouse model of myocardial infarction. Experimental Physiology 89(4), 497–505 (2004)CrossRefGoogle Scholar
  2. 2.
    Takagawa, J., Zhang, Y., Wong, M.: Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. Journal of Applied Physiology 102, 2104–2111 (2007)CrossRefGoogle Scholar
  3. 3.
    Alattar, M., Osman, N., Fahmy, A.: Myocardial segmentation using constrained multi-seeded region growing. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6112, pp. 89–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Wu, Q., Merchant, F., Castleman, K.: Microscope Image Processing, ch. 7. Elsevier, Amsterdam (1996)Google Scholar
  5. 5.
    Gonzalez, R., Woods, R., Eddins, S.: Digital Image Processing Using MATLAB, ch. 9. Pearson Education, London (2004)Google Scholar
  6. 6.
    Sharma, N., Aggarwal, L.: Automated medical image segmentation techniques. Journal of Medical Physics 35(1), 3–14 (2010)CrossRefGoogle Scholar
  7. 7.
    Pham, D., Xu, C.: A survey of current methods in medical image segmentation. Annual Review of Biomedical Engineering 2, 315–338 (1998)CrossRefGoogle Scholar
  8. 8.
    Hamarneh, G., Li, X.: Watershed segmentation using prior shape and appearance knowledge. Image and Vision Comp. 27(1-2), 59–68 (2009)CrossRefGoogle Scholar
  9. 9.
    Khadir, S., Ahamed, R.: Moving toward region-based image segmentation techniques: A study. Journal of Theoretical and Applied Information Technology 5(1), 1–7 (2009)Google Scholar
  10. 10.
    Ahmed, M., Mohamad, D.: Segmentation of brain mr images for tumor extraction by combining kmeans clustering and perona-malik anisotropic diffusion model. International Journal of Image Processing 2(1), 1–8 (2010)Google Scholar
  11. 11.
    Mayer, A., Greenspan, H.: An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans. on Medical Imaging 28(8), 1–12 (2009)CrossRefGoogle Scholar
  12. 12.
    Dabov, K., Foi, A., Katkovnik, V.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans. on Image Processing 16(8), 1–16 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefGoogle Scholar
  14. 14.
    Marcuzzo, M., Quelhas, P., Campilho, A., Mendonça, A.M., Campilho, A.: Automated arabidopsis plant root cell segmentation based on svm classification and region merging. Computers in Biology and Medicine 39(9), 1–9 (2009)CrossRefGoogle Scholar
  15. 15.
    Bleau, A., Leon, J.: Watershed-based segmentation and region merging. Computer Vision and Image Understanding 77(3), 317–370 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tiago Esteves
    • 1
    • 2
  • Mariana Valente
    • 2
  • Diana S. Nascimento
    • 2
  • Perpétua Pinto-do-Ó
    • 2
  • Pedro Quelhas
    • 1
    • 2
  1. 1.Departamento de Engenharia Electrotécnica e de Computadores, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  2. 2.INEB - Instituto de Engenharia Biomédica, Rua do CampoPortoPortugal

Personalised recommendations