Characterizing Compressibility of Disjoint Subgraphs with NLC Grammars

  • Robert Brijder
  • Hendrik Blockeel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6638)


We consider compression of a given set \(\mathcal{S}\) of isomorphic and disjoint subgraphs of a graph G using node labelled controlled (NLC) graph grammars. Given \(\mathcal{S}\) and G, we characterize whether or not there exists a NLC graph grammar consisting of exactly one rule such that (1) each of the subgraphs \(\mathcal{S}\) in G are compressed (i.e., replaced by a nonterminal) in the (unique) initial graph I, and (2) the set of generated terminal graphs is the singleton {G}.


Minimum Description Length Label Graph Node Label Graph Grammar Isomorphic Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathematical Systems Theory 20(2-3), 83–127 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blockeel, H., Brijder, R.: Learning non-confluent NLC graph grammar rules. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) 5th Conference on Computability in Europe (CiE 2009), Mathematical Theory and Computational Practice, Abstract Booklet, pp. 60–69 (2009)Google Scholar
  3. 3.
    Blockeel, H., Brijder, R.: Non-confluent NLC graph grammar inference by compressing disjoint subgraphs. Accepted for Journal of Logic and Computation. Preprint version: [arXiv:0901.4876] (2010)Google Scholar
  4. 4.
    Blockeel, H., Nijssen, S.: Induction of node label controlled graph grammar rules. In: Proceeding of the 6th International Workshop on Mining and Learning with Graphs, MLG 2008 (2008)Google Scholar
  5. 5.
    Cook, D., Holder, L.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1, 231–255 (1994)Google Scholar
  6. 6.
    Cook, D., Holder, L., Su, S., Maglothin, R., Jonyer, I.: Structural mining of molecular biology data. IEEE Engineering in Medicine and Biology 20(4), 67–74 (2001)CrossRefGoogle Scholar
  7. 7.
    Doshi, S., Huang, F., Oates, T.: Inferring the structure of graph grammars from data. In: Proceedings of the International Conference on Knowledge-Based Computer Systems, KBCS 2002 (2002)Google Scholar
  8. 8.
    Engelfriet, J., Rozenberg, G.: Graph grammars based on node rewriting: An introduction to NLC graph grammars. In: Graph-Grammars and Their Application to Computer Science, pp. 12–23 (1990)Google Scholar
  9. 9.
    Florencio, C., Ramon, J., Daenen, J., van den Bussche, J., van Dyck, D.: Context-free graph grammars as a language-bias mechanism for graph pattern mining. In: Blockeel, H., Borgwardt, K., Yan, X. (eds.) 7th International Workshop on Mining and Learning with Graphs, Extended Abstracts (2009)Google Scholar
  10. 10.
    Kukluk, J., Holder, L., Cook, D.: Inference of node replacement graph grammars. Intelligent Data Analysis 11(4), 377–400 (2007)Google Scholar
  11. 11.
    Kukluk, J., Holder, L., Cook, D.: Inference of edge replacement graph grammars. International Journal on Artificial Intelligence Tools 17(3), 539–554 (2008)CrossRefGoogle Scholar
  12. 12.
    Kukluk, J., You, C., Holder, L., Cook, D.: Learning node replacement graph grammars in metabolic pathways. In: Arabnia, H., Yang, M., Yang, J. (eds.) BIOCOMP, pp. 44–50. CSREA Press (2007)Google Scholar
  13. 13.
    Lin, L., Wu, T., Porway, J., Xu, Z.: A stochastic graph grammar for compositional object representation and recognition. Pattern Recognition 42(7), 1297–1307 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Oates, T., Doshi, S., Huang, F.: Estimating maximum likelihood parameters for stochastic context-free graph grammars. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 281–298. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Robert Brijder
    • 1
  • Hendrik Blockeel
    • 1
    • 2
  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenThe Netherlands
  2. 2.Department of Computer ScienceKatholieke UniversiteitLeuvenBelgium

Personalised recommendations