Performance Evaluation of Road Traffic Control Using a Fuzzy Cellular Model

  • Bartłomiej Płaczek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)


In this paper a method is proposed for performance evaluation of road traffic control strategies. The method is designed to be implemented in an on-line simulation environment, which enables optimisation of adaptive traffic control. Performance measures are computed using a fuzzy cellular traffic model, formulated as a hybrid system combining cellular automata and fuzzy calculus. Experimental results show that the introduced method allows the performance to be evaluated using imprecise traffic data. The fuzzy definitions of performance measures are convenient for uncertainty determination in traffic control decisions.


fuzzy numbers cellular automata road traffic control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bone, C., Dragicevic, S., Roberts, A.: A fuzzy-constrained cellular automata model of forest insect infestations. Ecol. Model. 192, 107–125 (2006)CrossRefGoogle Scholar
  2. 2.
    Chang, C., Zhang, Y., Dong, Y.: Application of fuzzy logic in the classical cellular automata model. J. Appl. Math. & Computing 20(12), 433–443 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gong, Y.G., Liu, L.: A Fuzzy Cellular Automaton Model Based On NaSchH Model. In: 2nd Int. Conf. on Signal Processing Systems, pp. V2-518–V2-522. IEEE, Los Alamitos (2010)Google Scholar
  4. 4.
    Kosiński, W.: On Fuzzy Number Calculus and Some Application. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 250–259. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Kosonen, I.: Multi-agent fuzzy signal control based on real-time simulation. Transport. Res. C-Emer. 11(5), 389–403 (2003)CrossRefGoogle Scholar
  6. 6.
    Kurzhanskiy, A.A., Varaiya, P.: Active traffic management on road networks: a macroscopic approach. Phil. Trans. R. Soc. A 368, 4607–4626 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lee, U., Gerla, M.: A survey of urban vehicular sensing platforms. Comput. Netw. 54(4), 527–544 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419, 1–64 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I France 2(12), 2221–2229 (1992)CrossRefGoogle Scholar
  10. 10.
    Płaczek, B.: Fuzzy Cellular Model for On-Line Traffic Simulation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6068, pp. 553–560. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Płaczek, B., Staniek, M.: Model Based Vehicle Extraction and Tracking for Road Traffic Control. In: Kurzyński, M., et al. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 844–851. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Ramirez, C.L., Castillo, O.: A Hybrid Model Based on a Cellular Automata and Fuzzy Logic to Simulate the Population Dynamics. In: Castillo, O., et al. (eds.) Soft Computing for Hybrid Intel. Systems, pp. 189–203. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Sevastianov, P.: Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory. Inform. Sciences 177(21), 4645–4661 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Van den Berg, M., Hegyi, A., De Schutter, B., Hellendoorn, J.: A macroscopic traffic flow model for integrated control of freeway and urban traffic networks. In: Proc. of the 42nd IEEE Conf. on Decision and Control, pp. 2774–2779 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bartłomiej Płaczek
    • 1
  1. 1.Faculty of TransportSilesian University of TechnologyKatowicePoland

Personalised recommendations