Modelling Non-stationarities in EEG Data with Robust Principal Component Analysis

  • Javier Pascual
  • Motoaki Kawanabe
  • Carmen Vidaurre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)


Modelling non-stationarities is an ubiquitous problem in neuroscience. Robust models help understand the underlying cause of the change observed in neuroscientific signals to bring new insights of brain functioning. A common neuroscientific signal to study the behaviour of the brain is electro-encephalography (EEG) because it is little intrusive, relatively cheap and easy to acquire. However, this signal is known to be highly non-stationary. In this paper we propose a robust method to visualize non-stationarities present in neuroscientific data. This method is unaffected by noise sources that are uninteresting to the cause of change, and therefore helps to better understand the neurological sources responsible for the observed non-stationarity. This technique exploits a robust version of the principal component analysis and we apply it as illustration to EEG data acquired using a brain-computer interface, which allows users to control an application through their brain activity. Non-stationarities in EEG cause a drop of performance during the operation of the brain-computer interface. Here we demonstrate how the proposed method can help to understand and design methods to deal with non-stationarities.


non-stationarity modelling robust statistics Principal Component Analysis EEG BCI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Braincomputer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Müller, K.R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167(1), 82–90 (2008)CrossRefGoogle Scholar
  3. 3.
    Vidaurre, C., Kawanabe, M., von Bünau, P., Blankertz, B., Müller, K.R.: Toward an unsupervised adaptation of LDA for Brain Computer Interfaces. IEEE Trans. Biomed. Eng (2011)Google Scholar
  4. 4.
    Vidaurre, C., Sannelli, C., Müller, K.R., Blankertz, B.: Machine-Learning Based Co-adaptive Calibration. Neural Comput. (in press 2011)Google Scholar
  5. 5.
    Vidaurre, C., Sannelli, C., Müller, K.R., Blankertz, B.: Co-adaptive calibration to improve BCI efficiency. J. Neural Eng (2011) (in press)Google Scholar
  6. 6.
    Vidaurre, C., Krämer, N., Blankertz, B., Schlögl, A.: Time Domain Parameters as a feature for EEG-based Brain Computer Interfaces. Neural Networks 22, 1313–1319 (2009)CrossRefGoogle Scholar
  7. 7.
    Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A., Müller, K.R., Curio, G., Dickhaus, T.: Neurophysiological Predictor of SMR-Based BCI Performance. NeuroImage 51(4), 1303–1309 (2010)CrossRefGoogle Scholar
  8. 8.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing Spatial Filters for Robust EEG Single-Trial Analysis. IEEE Signal Process Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  9. 9.
    Kawanabe, M., Vidaurre, C.: Improving BCI performance by modified common spatial patterns with robustly averaged covariance matrices. In: WC 2009, pp. 279–282 (2009)Google Scholar
  10. 10.
    Krauledat, M.: Analysis of Nonstationarities in EEG signals for improving Brain-Computer Interface performance. PhD thesis, Technische Universität Berlin, Fakultät IV – Elektrotechnik und Informatik (2008)Google Scholar
  11. 11.
    Lorist, M., Bezdan, E., ten Caat, M., Span, M., Roerdink, J., Maurits, N.: The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence studyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Pascual
    • 1
  • Motoaki Kawanabe
    • 2
    • 1
  • Carmen Vidaurre
    • 1
  1. 1.Machine Learning LaboratoryBerlin Institute of TechnologyGermany
  2. 2.Fraunhofer Institute FIRSTGermany

Personalised recommendations