Modelling Non-stationarities in EEG Data with Robust Principal Component Analysis

  • Javier Pascual
  • Motoaki Kawanabe
  • Carmen Vidaurre
Conference paper

DOI: 10.1007/978-3-642-21222-2_7

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)
Cite this paper as:
Pascual J., Kawanabe M., Vidaurre C. (2011) Modelling Non-stationarities in EEG Data with Robust Principal Component Analysis. In: Corchado E., Kurzyński M., Woźniak M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science, vol 6679. Springer, Berlin, Heidelberg

Abstract

Modelling non-stationarities is an ubiquitous problem in neuroscience. Robust models help understand the underlying cause of the change observed in neuroscientific signals to bring new insights of brain functioning. A common neuroscientific signal to study the behaviour of the brain is electro-encephalography (EEG) because it is little intrusive, relatively cheap and easy to acquire. However, this signal is known to be highly non-stationary. In this paper we propose a robust method to visualize non-stationarities present in neuroscientific data. This method is unaffected by noise sources that are uninteresting to the cause of change, and therefore helps to better understand the neurological sources responsible for the observed non-stationarity. This technique exploits a robust version of the principal component analysis and we apply it as illustration to EEG data acquired using a brain-computer interface, which allows users to control an application through their brain activity. Non-stationarities in EEG cause a drop of performance during the operation of the brain-computer interface. Here we demonstrate how the proposed method can help to understand and design methods to deal with non-stationarities.

Keywords

non-stationarity modelling robust statistics Principal Component Analysis EEG BCI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Javier Pascual
    • 1
  • Motoaki Kawanabe
    • 2
    • 1
  • Carmen Vidaurre
    • 1
  1. 1.Machine Learning LaboratoryBerlin Institute of TechnologyGermany
  2. 2.Fraunhofer Institute FIRSTGermany

Personalised recommendations