Hybrid Patient Classification System in Nursing Logistics Activities

  • Dragan Simić
  • Dragana Milutinović
  • Svetlana Simić
  • Vesna Suknaja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)


The history of patient classification in nursing dates back to the period of Florence Nightingale. The first and the foremost condition for providing quality nursing care, which is measured by care standards, and determined by number of hours of actual care, is the appropriate number of nurses. Patient classification criteria are discussed in this paper. Hybrid classification model based on learning vector quantization (LVQ) networks and self-organising maps (SOM) are purposed. It is possible to discus three types of experimental results. First result could be assessment of Braden scale and Mors scale by LVQ. Second result, the time for nursing logistics activities. The third is possibility to predict appropriate number of nurses for providing quality nursing care. This research was conducted on patients from Institute of Neurology, Clinical Centre of Vojvodina.


Patient classifications logistics activities nursing hybrid system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rimac, B., Bišćan, J.: Nursing Paradigm and Patient Safety. Medix 86, 167–170 (2010)Google Scholar
  2. 2.
    Twig, D., Duffield, C.: A Review of Workload Measures: A Context for a New Staffing Methodology in Western Australia. International Journal of Nursing Studies 46, 132–140 (2009)CrossRefGoogle Scholar
  3. 3.
    Abraham, A., Corchado, E., Corchado, J.M.: Hybrid Learning Machines. Neurocomputing 72(13-15), 2729–2730 (2009)CrossRefGoogle Scholar
  4. 4.
    Corchado, E., Abraham, A., de Carvalho, A.: Hybrid Intelligent Algorithms and Applications. Information Science 180(14), 2633–2634 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Derrac, J., García, S., Herrera, F.: A First Study on the Use of Coevolutionary Algorithms for Instance and Feature Selection. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS(LNAI), vol. 5572, pp. 557–564. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Sarnecki, A., Haas, S., Stevens, K.A., Willemsen, J.: Design and Implementation of a Patient Clasification System for Rehabilitation Nursing. Journal of Nursing Administration 28(3), 35–43 (1998)CrossRefGoogle Scholar
  7. 7.
    Vries, G.: Nursing Workload Measurement as management Information. European Journal of Operational Research 29, 199–208 (1987)CrossRefGoogle Scholar
  8. 8.
    Martins, P.A., Arantes, E.C., Forcella, H.T.: Patient Classification System in Psychiatric Nursing: Clinical Validation. Journal of School Nursing 42(2), 223–241 (2008)Google Scholar
  9. 9.
    Williams, S., Crouch, R.: Emergency Department Patient Classification System: A Systematic Review. Accident and Emergency Nursing 14(3), 160–170 (2006)CrossRefGoogle Scholar
  10. 10.
    Giovannetti, P.: Understanding patient classification systems. Journal of Nursing Administration 9(2), 4–9 (1979)Google Scholar
  11. 11.
    Ćorluka, V.: Standardized care purport – new nursing care quality. Health Care 34(3), 25–35 (2005)Google Scholar
  12. 12.
    Warstler, M.E.: Cyclic work schedules and a nonnurse coordinator of staffing. Journal of Nursing Administration 3(6), 45–51 (1973)CrossRefGoogle Scholar
  13. 13.
    Wills, E.M.: Grand Nursing Theories Based on Human Needs. In: McEwen, M., Wills, E. (eds.) Theoretical Based for Nursing. Lippincot Williams & Wilkins (2007)Google Scholar
  14. 14.
    Ćorluka, V., Aleksić, Ž., Savićević, M.: Instruction on Record Keeping in Health Protection, Family Care, Field Nurse Care and Health Care. Federal Institute for Health Improvement and Protection, Beograd (2000)Google Scholar
  15. 15.
    Croatian Chamber of Medical Nurses. Patient Classification According to Their Health Care Needs (2006),
  16. 16.
    Milutinović, D., Martinov-Cvejin, M., Simić, S.: Padovi i povrede hospitalizovanih pacijenata kao pokazatelji kvaliteta rada bolnice. Medicinski pregled LXII (5-6), 249–257 (2009)CrossRefGoogle Scholar
  17. 17.
    Torrecilla, J., Rojo, E., Oliet, M., Domínguez, J.C., Rodrínguez, F.: Self-Organizing Maps and Learning Vector Quantization Networks as Tools to Identify Vegetable Oils and Detect adulterations of Extra Virgin Olive Oil. In: Pierucci, S. (ed.) ESCAPE, vol. 20, Elsevier, Amsterdam (2010)Google Scholar
  18. 18.
    Simić, D., Kovačević, I., Simić, S.: Insolvency Prediction for Assessing Corporate Financial Health. Logic Journal of IGPL (2011), doi:10.1093/jigpal/jzr009Google Scholar
  19. 19.
    Wozniak, M., Zmyslony, M.: Designing Fusers on the Basis of Discriminants – Evolutionary and Neural Methods of Training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS(LNAI), vol. 6076, pp. 590–597. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Simin, D., Milutinović, D., Brestovački, B., Simić, S., Cigić, T.: Attitude of health science students towards interprofesional education. HealthMED Journal 4(2), 461–469 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dragan Simić
    • 1
  • Dragana Milutinović
    • 2
  • Svetlana Simić
    • 2
    • 3
  • Vesna Suknaja
    • 3
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNoviSerbia
  2. 2.Faculty of MedicineUniversity of Novi SadNovi SadSerbia
  3. 3.Clinic for NeurologyClinical Centre of VojvodinaNovi SadSerbia

Personalised recommendations