Evolutionary Protein Contact Maps Prediction Based on Amino Acid Properties

  • Alfonso E. Márquez Chamorro
  • Federico Divina
  • Jesús S. Aguilar-Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)


Protein structure prediction is one of the main challenges in Bioinformatics. An useful representation for protein 3D structure is the protein contact map. In this work, we propose an evolutionary approach for contact map prediction based on amino acids physicochemical properties. The evolutionary algorithm produces a set of rules that identifies contacts between amino acids. The rules obtained by the algorithm imposes a set of conditions on four amino acid properties in order to predict contacts. Results obtained confirm the validity of the proposal.


Protein Structure Prediction Contact Map Evolutionary Computation Residue-residue Contact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anfinsen, C.: The formation and stabilization of protein structure. Biochem. J. 128, 737–749 (1972)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y.: I-tasser: fully automated protein structure prediction in casp8. Proteins: Structure, Function, and Bioinformatics 77, 100–113 (2009)CrossRefGoogle Scholar
  3. 3.
    Tegge, A., Wang, Z., Eickholt, J., Cheng, J.: Nncon: Improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37(2), 515–518 (2009)CrossRefGoogle Scholar
  4. 4.
    Gupta, N., Mangal, N., Biswas, S.: Evolution and similarity evaluation of protein structures in contact map space. Proteins: Structure, Function, and Bioinformatics 59, 196–204 (2005)CrossRefGoogle Scholar
  5. 5.
    Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Biochim. Biophys. 231, 75–81 (1993)Google Scholar
  6. 6.
    Cui, Y., Chen, R.S., Hung, W.: Protein folding simulation with genetic algorithm and supersecondary structure constraints. Proteins: Structure, Function and Genetics 31, 247–257 (1998)CrossRefGoogle Scholar
  7. 7.
    Zhang, G., Han, K.: Hepatitis c virus contact map prediction based on binary strategy. Comp. Biol. and Chem. 31, 233–238 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Protein data bank web,
  9. 9.
    Gu, J., Bourne, P.E.: Structural Bioinformatics (Methods of Biochemical Analysis). Wiley-Blackwell, Chichester (2003)Google Scholar
  10. 10.
    Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. J. Mol. Bio. 157, 105–132 (1982)CrossRefGoogle Scholar
  11. 11.
    Grantham, R.: Amino acid difference formula to help explain protein evolution. J. J. Mol. Bio. 185, 862–864 (1974)Google Scholar
  12. 12.
    Klein, P., Kanehisa, M., DeLisi, C.: Prediction of protein function from sequence properties: Discriminant analysis of a data base. Biochim. Biophys. 787, 221–226 (1984)CrossRefGoogle Scholar
  13. 13.
    Dawson, D.M.: The Biochemical Genetics of Man. In: Brock, D.J.H., Mayo, O. (eds.) (1972)Google Scholar
  14. 14.
    Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact map with neural networks and correlated mutations. Protein Engineering 14, 133–154 (2001)Google Scholar
  15. 15.
    Zhang, G.Z., Huang, D.S., Quan, Z.H.: Combining a binary input encoding scheme with rbfnn for globulin protein inter-residue contact map prediction. Pattern Recognition Letters 16(10), 1543–1553 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alfonso E. Márquez Chamorro
    • 1
  • Federico Divina
    • 1
  • Jesús S. Aguilar-Ruiz
    • 1
  1. 1.School of EngineeringPablo de Olavide University of SevillaSpain

Personalised recommendations