Reduct-Based Analysis of Decision Algorithms: Application in Computational Stylistics

  • Urszula Stańczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)


Computational stylistics focuses on description and quantifiable expression of linguistic styles of written documents that enables author characterisation, comparison, and attribution. It is a case when observation of subtle relationships in data sets is required, with domain knowledge uncertain. Therefore, techniques from the artificial intelligence area, such as Dominance-based Rough Set Approach (DRSA), are well suited to handle the problem. DRSA enables construction of a rule-based classifier consisting of decision rules, selection of which can greatly influence classification accuracy. The paper presents research on application of DRSA classifier in author recognition for literary texts, with considerations on the classifier performance based on an analysis of relative reducts, such subsets of features that maintain classification properties.


DRSA Classifier Computational Stylistics Reduct Decision Algorithm Feature Selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burrows, J.: Textual analysis. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A companion to digital humanities. Blackwell, Oxford (2004)Google Scholar
  2. 2.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A companion to digital humanities, Blackwell, Oxford (2004)Google Scholar
  3. 3.
    Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. Transactions on Rough Sets 7, 36–52 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147, 1–12 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Peng, R., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Shen, Q.: Rough feature selection for intelligent classifiers. Transactions on Rough Sets 7, 244–255 (2006)Google Scholar
  7. 7.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Stanczyk, U.: Dominance-based rough set approach employed in search of authorial invariants. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. Advances in Intelligent and Soft Computing, vol. 57, pp. 293–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Stańczyk, U.: DRSA decision algorithm analysis in stylometric processing of literary texts. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 600–609. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Urszula Stańczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations