Advertisement

On Performance of DRSA-ANN Classifier

  • Urszula Stańczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)

Abstract

Rule-based and connectionist classifiers are typically named as two different approaches to recognition tasks. The first relies on induction of a set of rules that list conditions to be met for a decision to be applicable, while the latter means distribution of data and processing. Both solutions give satisfactory results in many classification problems yet their fusion and analysis of performance of the resulting hybrid classifier bring additional observations as to the role of particular features in the recognition. These observations are not based on domain knowledge, but on techniques employed and their inherent properties. The paper presents a study on performance of DRSA-ANN classifier applied within the domain of stylometry, a quantitative analysis of writing styles.

Keywords

DRSA ANN Classifier Feature Selection Stylometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burrows, J.: Textual analysis. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A companion to digital humanities, ch. 23, Blackwell, Oxford (2004)Google Scholar
  2. 2.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A companion to digital humanities, Blackwell, Oxford (2004)Google Scholar
  3. 3.
    Derrac, J., García, S., Herrera, F.: A first study on the use of coevolutionary algorithms for instance and feature selection. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 557–564. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Greco, S., Matarazzo, B., Slowinski, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. Transactions on Rough Sets 7, 36–52 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Peng, R.D., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Stańczyk, U.: Relative reduct-based selection of features for ANN classifier. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stañczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol. 59, pp. 335–344. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Stańczyk, U.: Rough set-based analysis of characteristic features for ANN classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 565–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Waugh, S., Adams, A., Twedeedie, F.: Computational stylistics using artificial neural networks. Literary and Linguistic Computing 15(2), 187–198 (2000)CrossRefGoogle Scholar
  10. 10.
    Wozniak, M., Zmyslony, M.: Designing fusers on the basis of discriminants – evolutionary and neural methods of training. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS, vol. 6076, pp. 590–597. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Urszula Stańczyk
    • 1
  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations