Outlier Analysis for Plastic Card Fraud Detection a Hybridized and Multi-Objective Approach

  • Arturo Elías
  • Alberto Ochoa-Zezzatti
  • Alejandro Padilla
  • Julio Ponce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6679)


Nowadays, plastic card fraud detection is of great importance to financial institutions. This paper presents a proposal for an automated credit card fraud detection system based on the outlier analysis technology. Previous research has established that the use of outlier analysis is one of the best techniques for the detection of fraud in general. However, to establish patterns to identify anomalies, these patterns are learned by the fraudsters and then they change the way to make de fraud. The approach applies a multi-objective model hybridized with particle swarm optimization of typical cardholder’s behavior and to analyze the deviation of transactions, thus finding suspicious transactions in a non supervised scheme.


Credit Card Fraud Outlier Detection Multi-Objective Optimization Particle Swarm Optimization Unsupervised scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, S., Bilenko, M., Mooney, R.: A probabilistic framework for semi-supervised clustering. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 59–68. ACM Press, Seattle (2004)Google Scholar
  2. 2.
    Beni, G., Wang, U.: Swarm intelligence in cellular robotic systems. In: NATO advanced workshop on robots and biological systems, Tuscany, Italy, pp. 26–30 (1989)Google Scholar
  3. 3.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys, 1–58 (2009)Google Scholar
  4. 4.
    Coello, C., Lechunga, M.: MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1051–1056. IEEE Press, Hawaii (2002)Google Scholar
  5. 5.
    Cui, X., Potok, T., Palathingal, P.: Document Clustering using Particle Swarm Optimization. In: Proceedings Swarm Intelligence Symposium, 2005, IEEE, Los Alamitos (2005)Google Scholar
  6. 6.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley and Sons, Chichester (2001)zbMATHGoogle Scholar
  7. 7.
    Dehuri, S., Cho, S.: Multi-criterion Pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-art. Computer Science Review, 19–40 (2009)Google Scholar
  8. 8.
    Grosan, C., Abraham, A.: Hybrid evolutionary algorithms: methodologies, architectures, and reviews. In: Grosan, C., Abraham, A., Ishibuchi, H. (eds.) Hybrid evolutionary algorithms, pp. 1–17. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Jiamthapthaksin, R., Eick, C.F., Vilalta, R.: A Framework for Multi-Objective Clustering and Its Application to Co-Location Mining. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS, vol. 5678, pp. 188–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Juszczak, P., Adams, N., Hand, D., Whitrow, C., Weston, D.: Off-the-peg and bespoke classifiers for fraud detection. Computational Statistics & Data Analysis (2008)Google Scholar
  11. 11.
    Kou, Y., Lu, C., Sirwongwattana, S., Huang, Y.: Survey of fraud detection techniques. In: Proccedings IEEE International Conference on Networking, Sensing and Control, pp. 749–754. IEEE press, Taipei (2004)Google Scholar
  12. 12.
    Lozano, M., García-Martínez, C.: Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report. Computers and Operations Research, 481–497 (2010)Google Scholar
  13. 13.
    Özçift, A., Kaya, M., Gülten, A., Karabulut, M.: Swarm optimized organizing map (SWOM): A swarm intelligence based optimization of self-organizing map. Expert Systems with Applications: An International Journal, 640–648 (2009)Google Scholar
  14. 14.
    Raidl, G.: A unified view on hybrid metaheuristics. In: Third International Workshop, Proceedings of Hybrid Metaheuristics, pp. 1–12. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Sánchez, D., Vila, M., Cerda, L., Serrano, J.: Association rules applied to credit card fraud detection. Expert Systems with Applications: An International Journal (2009)Google Scholar
  16. 16.
    Srivastava, A., Kundu, A., Sural, S., Majumdar, A.: Credit Card Fraud Detection Using Hidden Markov Model. Transactions on Dependable and Secure Computing (2008)Google Scholar
  17. 17.
    Stolfo, S., Fan, D., Lee, W., Prodromidis, W., Chan, P.: Cost-Based Modeling for Fraud and Intrusion Detection: Results from the JAM Project. In: Proccedings DARPA Information Survivability Conference & Exposition, pp. 130–144. IEEE, Los Alamitos (2000)Google Scholar
  18. 18.
    Whitrow, C., Hand, D., Juszczak, P., Weston, D., Adams, N.: Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 30–55 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arturo Elías
    • 1
  • Alberto Ochoa-Zezzatti
    • 2
  • Alejandro Padilla
    • 1
  • Julio Ponce
    • 1
  1. 1.Universidad Autónoma de AguascalientesMexico
  2. 2.Universidad Autónoma de Ciudad JuárezMexico

Personalised recommendations